CVFC: Attention-Based Cross-View Feature Consistency for Weakly
Supervised Semantic Segmentation of Pathology Images
- URL: http://arxiv.org/abs/2308.10449v1
- Date: Mon, 21 Aug 2023 03:50:09 GMT
- Title: CVFC: Attention-Based Cross-View Feature Consistency for Weakly
Supervised Semantic Segmentation of Pathology Images
- Authors: Liangrui Pan, Lian Wang, Zhichao Feng, Liwen Xu, Shaoliang Peng
- Abstract summary: Histopathology image segmentation is the gold standard for diagnosing cancer.
Many studies now use imagelevel labels to achieve pixel-level segmentation to reduce the need for fine-grained annotation.
We propose an attention-based cross-view feature consistency end-to-end pseudo-mask generation framework named CVFC.
- Score: 3.2128744424771725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Histopathology image segmentation is the gold standard for diagnosing cancer,
and can indicate cancer prognosis. However, histopathology image segmentation
requires high-quality masks, so many studies now use imagelevel labels to
achieve pixel-level segmentation to reduce the need for fine-grained
annotation. To solve this problem, we propose an attention-based cross-view
feature consistency end-to-end pseudo-mask generation framework named CVFC
based on the attention mechanism. Specifically, CVFC is a three-branch joint
framework composed of two Resnet38 and one Resnet50, and the independent branch
multi-scale integrated feature map to generate a class activation map (CAM); in
each branch, through down-sampling and The expansion method adjusts the size of
the CAM; the middle branch projects the feature matrix to the query and key
feature spaces, and generates a feature space perception matrix through the
connection layer and inner product to adjust and refine the CAM of each branch;
finally, through the feature consistency loss and feature cross loss to
optimize the parameters of CVFC in co-training mode. After a large number of
experiments, An IoU of 0.7122 and a fwIoU of 0.7018 are obtained on the
WSSS4LUAD dataset, which outperforms HistoSegNet, SEAM, C-CAM, WSSS-Tissue, and
OEEM, respectively.
Related papers
- FCC: Fully Connected Correlation for Few-Shot Segmentation [11.277022867553658]
Few-shot segmentation (FSS) aims to segment the target object in a query image using only a small set of support images and masks.
Previous methods have tried to obtain prior information by creating correlation maps from pixel-level correlation on final-layer or same-layer features.
We introduce FCC (Fully Connected Correlation) to integrate pixel-level correlations between support and query features.
arXiv Detail & Related papers (2024-11-18T03:32:02Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Light-weight Retinal Layer Segmentation with Global Reasoning [14.558920359236572]
We propose LightReSeg for retinal layer segmentation which can be applied to OCT images.
Our approach achieves a better segmentation performance compared to the current state-of-the-art method TransUnet.
arXiv Detail & Related papers (2024-04-25T05:42:41Z) - BRAU-Net++: U-Shaped Hybrid CNN-Transformer Network for Medical Image Segmentation [11.986549780782724]
We propose a hybrid yet effective CNN-Transformer network, named BRAU-Net++, for an accurate medical image segmentation task.
Specifically, BRAU-Net++ uses bi-level routing attention as the core building block to design our u-shaped encoder-decoder structure.
Our proposed approach surpasses other state-of-the-art methods including its baseline: BRAU-Net.
arXiv Detail & Related papers (2024-01-01T10:49:09Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - ClusterFormer: Clustering As A Universal Visual Learner [80.79669078819562]
CLUSTERFORMER is a universal vision model based on the CLUSTERing paradigm with TransFORMER.
It is capable of tackling heterogeneous vision tasks with varying levels of clustering granularity.
For its efficacy, we hope our work can catalyze a paradigm shift in universal models in computer vision.
arXiv Detail & Related papers (2023-09-22T22:12:30Z) - Retinal Structure Detection in OCTA Image via Voting-based Multi-task
Learning [27.637273690432608]
We propose a novel Voting-based Adaptive Feature Fusion multi-task network (VAFF-Net) for joint segmentation, detection, and classification of RV, FAZ, and RVJ.
A task-specific voting gate module is proposed to adaptively extract and fuse different features for specific tasks at two levels.
To facilitate further research, part of these datasets with the source code and evaluation benchmark have been released for public access.
arXiv Detail & Related papers (2022-08-23T05:53:04Z) - Decoupled Pyramid Correlation Network for Liver Tumor Segmentation from
CT images [22.128902125820193]
We propose a Decoupled Pyramid Correlation Network (DPC-Net)
It exploits attention mechanisms to fully leverage both low and high-level features embedded in FCN to segment liver tumor.
It achieves a competitive results with a DSC of 96.2% and an ASSD of 1.636 mm for liver segmentation.
arXiv Detail & Related papers (2022-05-26T07:31:29Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Kullback-Leibler Divergence-Based Fuzzy $C$-Means Clustering
Incorporating Morphological Reconstruction and Wavelet Frames for Image
Segmentation [152.609322951917]
We come up with a Kullback-Leibler (KL) divergence-based Fuzzy C-Means (FCM) algorithm by incorporating a tight wavelet frame transform and a morphological reconstruction operation.
The proposed algorithm works well and comes with better segmentation performance than other comparative algorithms.
arXiv Detail & Related papers (2020-02-21T05:19:10Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.