ALI-DPFL: Differentially Private Federated Learning with Adaptive Local Iterations
- URL: http://arxiv.org/abs/2308.10457v9
- Date: Wed, 22 May 2024 04:17:46 GMT
- Title: ALI-DPFL: Differentially Private Federated Learning with Adaptive Local Iterations
- Authors: Xinpeng Ling, Jie Fu, Kuncan Wang, Haitao Liu, Zhili Chen,
- Abstract summary: Federated Learning (FL) is a distributed machine learning technique that allows model training among multiple devices or organizations by sharing training parameters instead of raw data.
adversaries can still infer individual information through inference attacks on these training parameters. Differential Privacy (DP) has been widely used in FL to prevent such attacks.
We consider differentially private federated learning in a resource-constrained scenario, where both privacy budget and communication rounds are constrained.
- Score: 26.310416723272184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a distributed machine learning technique that allows model training among multiple devices or organizations by sharing training parameters instead of raw data. However, adversaries can still infer individual information through inference attacks (e.g. differential attacks) on these training parameters. As a result, Differential Privacy (DP) has been widely used in FL to prevent such attacks. We consider differentially private federated learning in a resource-constrained scenario, where both privacy budget and communication rounds are constrained. By theoretically analyzing the convergence, we can find the optimal number of local DPSGD iterations for clients between any two sequential global updates. Based on this, we design an algorithm of Differentially Private Federated Learning with Adaptive Local Iterations (ALI-DPFL). We experiment our algorithm on the MNIST, FashionMNIST and Cifar10 datasets, and demonstrate significantly better performances than previous work in the resource-constraint scenario. Code is available at https://github.com/cheng-t/ALI-DPFL.
Related papers
- DP-DyLoRA: Fine-Tuning Transformer-Based Models On-Device under Differentially Private Federated Learning using Dynamic Low-Rank Adaptation [15.023077875990614]
Federated learning (FL) allows clients to collaboratively train a global model without sharing their local data with a server.
Differential privacy (DP) addresses such leakage by providing formal privacy guarantees, with mechanisms that add randomness to the clients' contributions.
We propose an adaptation method that can be combined with differential privacy and call it DP-DyLoRA.
arXiv Detail & Related papers (2024-05-10T10:10:37Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated learning (FL) is a machine learning paradigm that targets model training without gathering the local data over various data sources.
Standard FL, which employs a single server, can only support a limited number of users, leading to degraded learning capability.
In this work, we consider a multi-server FL framework, referred to as emphConfederated Learning (CFL) in order to accommodate a larger number of users.
arXiv Detail & Related papers (2024-02-28T03:27:10Z) - Balancing Privacy and Performance for Private Federated Learning
Algorithms [4.681076651230371]
Federated learning (FL) is a distributed machine learning framework where multiple clients collaborate to train a model without exposing their private data.
FL algorithms frequently employ a differential privacy mechanism that introduces noise into each client's model updates before sharing.
We show that an optimal balance exists between the number of local steps and communication rounds, one that maximizes the convergence performance within a given privacy budget.
arXiv Detail & Related papers (2023-04-11T10:42:11Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
This paper focuses on the problem of statistical heterogeneity of the data in the same federated network.
Several Federated Learning algorithms, such as FedAvg, FedProx and Federated Curvature (FedCurv) have already been proposed.
As a side product of this work, we release the non-IID version of the datasets we used so to facilitate further comparisons from the FL community.
arXiv Detail & Related papers (2023-03-31T10:13:01Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Multi-Center Federated Learning [62.32725938999433]
Federated learning (FL) can protect data privacy in distributed learning.
It merely collects local gradients from users without access to their data.
We propose a novel multi-center aggregation mechanism.
arXiv Detail & Related papers (2021-08-19T12:20:31Z) - FedBN: Federated Learning on Non-IID Features via Local Batch
Normalization [23.519212374186232]
The emerging paradigm of federated learning (FL) strives to enable collaborative training of deep models on the network edge without centrally aggregating raw data.
We propose an effective method that uses local batch normalization to alleviate the feature shift before averaging models.
The resulting scheme, called FedBN, outperforms both classical FedAvg and the state-of-the-art for non-iid data.
arXiv Detail & Related papers (2021-02-15T16:04:10Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
Federated learning (FL) is capable of preserving private data from mobile terminals (MTs) while training the data into useful models.
From a viewpoint of information theory, it is still possible for a curious server to infer private information from the shared models uploaded by MTs.
We propose a user-level differential privacy (UDP) algorithm by adding artificial noise to the shared models before uploading them to servers.
arXiv Detail & Related papers (2020-02-29T10:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.