DPAN: Dynamic Preference-based and Attribute-aware Network for Relevant
Recommendations
- URL: http://arxiv.org/abs/2308.10527v1
- Date: Mon, 21 Aug 2023 07:26:09 GMT
- Title: DPAN: Dynamic Preference-based and Attribute-aware Network for Relevant
Recommendations
- Authors: Wei Dai, Yingmin Su, Xiaofeng Pan
- Abstract summary: We propose a novel method called the Dynamic Preference-based and Attribute-aware Network (DPAN) for predicting Click-Through Rate (CTR) in relevant recommendations.
DPAN has been successfully deployed on our e-commerce platform serving the primary traffic for relevant recommendations.
- Score: 3.4947076558586967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In e-commerce platforms, the relevant recommendation is a unique scenario
providing related items for a trigger item that users are interested in.
However, users' preferences for the similarity and diversity of recommendation
results are dynamic and vary under different conditions. Moreover, individual
item-level diversity is too coarse-grained since all recommended items are
related to the trigger item. Thus, the two main challenges are to learn
fine-grained representations of similarity and diversity and capture users'
dynamic preferences for them under different conditions. To address these
challenges, we propose a novel method called the Dynamic Preference-based and
Attribute-aware Network (DPAN) for predicting Click-Through Rate (CTR) in
relevant recommendations. Specifically, based on Attribute-aware Activation
Values Generation (AAVG), Bi-dimensional Compression-based Re-expression (BCR)
is designed to obtain similarity and diversity representations of user
interests and item information. Then Shallow and Deep Union-based Fusion (SDUF)
is proposed to capture users' dynamic preferences for the diverse degree of
recommendation results according to various conditions. DPAN has demonstrated
its effectiveness through extensive offline experiments and online A/B testing,
resulting in a significant 7.62% improvement in CTR. Currently, DPAN has been
successfully deployed on our e-commerce platform serving the primary traffic
for relevant recommendations. The code of DPAN has been made publicly
available.
Related papers
- MDAP: A Multi-view Disentangled and Adaptive Preference Learning Framework for Cross-Domain Recommendation [63.27390451208503]
Cross-domain Recommendation systems leverage multi-domain user interactions to improve performance.
We propose the Multi-view Disentangled and Adaptive Preference Learning framework.
Our framework uses a multiview encoder to capture diverse user preferences.
arXiv Detail & Related papers (2024-10-08T10:06:45Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - A Preference-oriented Diversity Model Based on Mutual-information in Re-ranking for E-commerce Search [11.49911967350851]
This paper proposes a Preference-oriented Diversity Model Based on Mutual-information (PODM-MI)
PODM-MI consider both accuracy and diversity in the re-ranking process.
We have successfully deployed PODM-MI on an e-commerce search platform.
arXiv Detail & Related papers (2024-05-24T13:03:34Z) - Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential
Recommendations [50.03560306423678]
We propose Ada-Retrieval, an adaptive multi-round retrieval paradigm for recommender systems.
Ada-Retrieval iteratively refines user representations to better capture potential candidates in the full item space.
arXiv Detail & Related papers (2024-01-12T15:26:40Z) - Disentangled Representation for Diversified Recommendations [41.477162048806434]
Accuracy and diversity have long been considered to be two conflicting goals for recommendations.
We propose a general diversification framework agnostic to the choice of recommendation algorithms.
Our solution disentangles the learnt user representation in the recommendation module into category-independent and category-dependent components.
arXiv Detail & Related papers (2023-01-13T11:47:10Z) - Diverse Preference Augmentation with Multiple Domains for Cold-start
Recommendations [92.47380209981348]
We propose a Diverse Preference Augmentation framework with multiple source domains based on meta-learning.
We generate diverse ratings in a new domain of interest to handle overfitting on the case of sparse interactions.
These ratings are introduced into the meta-training procedure to learn a preference meta-learner, which produces good generalization ability.
arXiv Detail & Related papers (2022-04-01T10:10:50Z) - D2RLIR : an improved and diversified ranking function in interactive
recommendation systems based on deep reinforcement learning [0.3058685580689604]
This paper proposes a deep reinforcement learning based recommendation system by utilizing Actor-Critic architecture.
The proposed model is able to generate a diverse while relevance recommendation list based on the user's preferences.
arXiv Detail & Related papers (2021-10-28T13:11:29Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Thematic recommendations on knowledge graphs using multilayer networks [0.0]
We present a framework to generate and evaluate thematic recommendations based on multilayer network representations of knowledge graphs (KGs)
In this representation, each layer encodes a different type of relationship in the KG, and directed interlayer couplings connect the same entity in different roles.
We apply an adaptation of the personalised PageRank algorithm to multilayer models of KGs to generate item-item recommendations.
arXiv Detail & Related papers (2021-05-12T15:30:21Z) - CRACT: Cascaded Regression-Align-Classification for Robust Visual
Tracking [97.84109669027225]
We introduce an improved proposal refinement module, Cascaded Regression-Align- Classification (CRAC)
CRAC yields new state-of-the-art performances on many benchmarks.
In experiments on seven benchmarks including OTB-2015, UAV123, NfS, VOT-2018, TrackingNet, GOT-10k and LaSOT, our CRACT exhibits very promising results in comparison with state-of-the-art competitors.
arXiv Detail & Related papers (2020-11-25T02:18:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.