Synergizing Implicit and Explicit User Interests: A Multi-Embedding Retrieval Framework at Pinterest
- URL: http://arxiv.org/abs/2506.23060v1
- Date: Sun, 29 Jun 2025 02:14:21 GMT
- Title: Synergizing Implicit and Explicit User Interests: A Multi-Embedding Retrieval Framework at Pinterest
- Authors: Zhibo Fan, Hongtao Lin, Haoyu Chen, Bowen Deng, Hedi Xia, Yuke Yan, James Li,
- Abstract summary: The retrieval stage plays a critical role in generating a high-recall set of candidate items.<n>Traditional two-tower models struggle in this regard due to limited user-item feature interaction.<n>We propose a novel multi-embedding retrieval framework designed to enhance user interest representation.
- Score: 9.904093205817247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Industrial recommendation systems are typically composed of multiple stages, including retrieval, ranking, and blending. The retrieval stage plays a critical role in generating a high-recall set of candidate items that covers a wide range of diverse user interests. Effectively covering the diverse and long-tail user interests within this stage poses a significant challenge: traditional two-tower models struggle in this regard due to limited user-item feature interaction and often bias towards top use cases. To address these issues, we propose a novel multi-embedding retrieval framework designed to enhance user interest representation by generating multiple user embeddings conditioned on both implicit and explicit user interests. Implicit interests are captured from user history through a Differentiable Clustering Module (DCM), whereas explicit interests, such as topics that the user has followed, are modeled via Conditional Retrieval (CR). These methodologies represent a form of conditioned user representation learning that involves condition representation construction and associating the target item with the relevant conditions. Synergizing implicit and explicit user interests serves as a complementary approach to achieve more effective and comprehensive candidate retrieval as they benefit on different user segments and extract conditions from different but supplementary sources. Extensive experiments and A/B testing reveal significant improvements in user engagements and feed diversity metrics. Our proposed framework has been successfully deployed on Pinterest home feed.
Related papers
- Multi-agents based User Values Mining for Recommendation [52.26100802380767]
We propose a zero-shot multi-LLM collaborative framework for effective and accurate user value extraction.<n>We apply text summarization techniques to condense item content while preserving essential meaning.<n>To mitigate hallucinations, we introduce two specialized agent roles: evaluators and supervisors.
arXiv Detail & Related papers (2025-05-02T04:01:31Z) - Why Not Together? A Multiple-Round Recommender System for Queries and Items [37.709748983831034]
A fundamental technique of recommender systems involves modeling user preferences, where queries and items are widely used as symbolic representations of user interests.<n>We propose a novel approach named Multiple-round Auto Guess-and-Update System (MAGUS) that capitalizes on the synergies between both types.
arXiv Detail & Related papers (2024-12-14T10:49:00Z) - LLM-based Bi-level Multi-interest Learning Framework for Sequential Recommendation [54.396000434574454]
We propose a novel multi-interest SR framework combining implicit behavioral and explicit semantic perspectives.<n>It includes two modules: the Implicit Behavioral Interest Module and the Explicit Semantic Interest Module.<n>Experiments on four real-world datasets validate the framework's effectiveness and practicality.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - Retrieval Augmentation via User Interest Clustering [57.63883506013693]
Industrial recommender systems are sensitive to the patterns of user-item engagement.
We propose a novel approach that efficiently constructs user interest and facilitates low computational cost inference.
Our approach has been deployed in multiple products at Meta, facilitating short-form video related recommendation.
arXiv Detail & Related papers (2024-08-07T16:35:10Z) - CART: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
Cross-modal retrieval aims to search for instances, which are semantically related to the query through the interaction of different modal data.<n>Traditional solutions utilize a single-tower or dual-tower framework to explicitly compute the score between queries and candidates.<n>We propose a generative cross-modal retrieval framework (CART) based on coarse-to-fine semantic modeling.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - EmbSum: Leveraging the Summarization Capabilities of Large Language Models for Content-Based Recommendations [38.44534579040017]
We introduce EmbSum, a framework that enables offline pre-computations of users and candidate items.
The model's ability to generate summaries of user interests serves as a valuable by-product, enhancing its usefulness for personalized content recommendations.
arXiv Detail & Related papers (2024-05-19T04:31:54Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
We propose MISSRec, a multi-modal pre-training and transfer learning framework for sequential recommendation.
On the user side, we design a Transformer-based encoder-decoder model, where the contextual encoder learns to capture the sequence-level multi-modal user interests.
On the candidate item side, we adopt a dynamic fusion module to produce user-adaptive item representation.
arXiv Detail & Related papers (2023-08-22T04:06:56Z) - The Minority Matters: A Diversity-Promoting Collaborative Metric
Learning Algorithm [154.47590401735323]
Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems.
This paper focuses on a challenging scenario where a user has multiple categories of interests.
We propose a novel method called textitDiversity-Promoting Collaborative Metric Learning (DPCML)
arXiv Detail & Related papers (2022-09-30T08:02:18Z) - Everyone's Preference Changes Differently: Weighted Multi-Interest
Retrieval Model [18.109035867113217]
Multi-Interest Preference (MIP) model is an approach that produces multi-interest for users by using the user's sequential engagement more effectively.
Extensive experiments have been done on various industrial-scale datasets to demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-07-14T04:29:54Z) - Multiple Interest and Fine Granularity Network for User Modeling [3.508126539399186]
User modeling plays a fundamental role in industrial recommender systems, either in the matching stage and the ranking stage, in terms of both the customer experience and business revenue.
Most existing deep-learning based approaches exploit item-ids and category-ids but neglect fine-grained features like color and mate-rial, which hinders modeling the fine granularity of users' interests.
We present Multiple interest and Fine granularity Net-work (MFN), which tackle users' multiple and fine-grained interests and construct the model from both the similarity relationship and the combination relationship among the users' multiple interests.
arXiv Detail & Related papers (2021-12-05T15:12:08Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Diversity Regularized Interests Modeling for Recommender Systems [25.339169652217844]
We propose a novel method of Diversity Regularized Interests Modeling (DRIM) for Recommender Systems.
Each interest of the user should have a certain degree of distinction, thus we introduce three strategies as the diversity regularized separator to separate multiple user interest vectors.
arXiv Detail & Related papers (2021-03-23T09:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.