論文の概要: Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction
- arxiv url: http://arxiv.org/abs/2308.10694v1
- Date: Mon, 21 Aug 2023 13:03:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 13:28:24.604370
- Title: Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction
- Title(参考訳): 先行重力方向の非校正画像における点推定
- Authors: R\'emi Pautrat, Shaohui Liu, Petr Hruby, Marc Pollefeys, Daniel Barath
- Abstract要約: 我々はマンハッタンのフレームを推定する問題に取り組む。
2つの新しい2行解法が導出され、そのうちの1つは既存の解法に影響を与える特異点に悩まされない。
また、局所最適化の性能を高めるために、任意の行で実行される新しい最小でないメソッドを設計する。
- 参考スコア(独自算出の注目度): 82.72686460985297
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We tackle the problem of estimating a Manhattan frame, i.e. three orthogonal
vanishing points, and the unknown focal length of the camera, leveraging a
prior vertical direction. The direction can come from an Inertial Measurement
Unit that is a standard component of recent consumer devices, e.g.,
smartphones. We provide an exhaustive analysis of minimal line configurations
and derive two new 2-line solvers, one of which does not suffer from
singularities affecting existing solvers. Additionally, we design a new
non-minimal method, running on an arbitrary number of lines, to boost the
performance in local optimization. Combining all solvers in a hybrid robust
estimator, our method achieves increased accuracy even with a rough prior.
Experiments on synthetic and real-world datasets demonstrate the superior
accuracy of our method compared to the state of the art, while having
comparable runtimes. We further demonstrate the applicability of our solvers
for relative rotation estimation. The code is available at
https://github.com/cvg/VP-Estimation-with-Prior-Gravity.
- Abstract(参考訳): 我々は,マンハッタンのフレーム,すなわち直交点3点,カメラの焦点距離を推定する問題に,先行する垂直方向を利用して対処する。
この方向は、最近の消費者向けデバイス(例えばスマートフォン)の標準コンポーネントである慣性測定ユニットから得ることができる。
最少ライン構成の排他的解析を行い、2つの新しい2行解法を導出するが、その1つは既存の解法に影響を与える特異性に支障を来さない。
さらに,局所最適化の性能を向上させるために,任意の行数で動作する非最小メソッドを設計した。
ハイブリッドなロバスト推定器で全ての解法を組み合わせることで,粗い前もって精度が向上する。
合成および実世界のデータセットに対する実験は、我々の手法の精度が最先端であることを示しながら、同等のランタイムを持つ。
さらに,相対回転推定における解法の適用性を示す。
コードはhttps://github.com/cvg/VP-Estimation-with-Prior-Gravityで公開されている。
関連論文リスト
- SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
本研究では,SPAREを提案する。SPAREは,非剛性登録のための対称化点-平面間距離を用いた新しい定式化である。
提案手法は, 厳密でない登録問題の精度を大幅に向上し, 比較的高い解効率を維持する。
論文 参考訳(メタデータ) (2024-05-30T15:55:04Z) - An Accurate and Real-time Relative Pose Estimation from Triple Point-line Images by Decoupling Rotation and Translation [10.05584976985694]
3D-2D制約は、Visual Odometry (VO) やStructure-from-Motion (SfM) システムで広く使われている。
回転変換デカップリング推定に基づく新しい3次元ポーズ解決器を提案する。
論文 参考訳(メタデータ) (2024-03-18T10:21:05Z) - P2O-Calib: Camera-LiDAR Calibration Using Point-Pair Spatial Occlusion
Relationship [1.6921147361216515]
本研究では,3次元空間における閉塞関係を用いた2次元3次元エッジポイント抽出に基づく新たなターゲットレスキャリブレーション手法を提案する。
本手法は,高画質カメラ-LiDARキャリブレーションによる実用的応用に寄与する,低誤差かつ高ロバスト性を実現する。
論文 参考訳(メタデータ) (2023-11-04T14:32:55Z) - Cryo-forum: A framework for orientation recovery with uncertainty
measure with the application in cryo-EM image analysis [0.0]
本稿では,10次元特徴ベクトルを用いて方向を表現し,予測方向を単位四元数として導出し,不確実な距離で補足する擬似制約擬似プログラムを提案する。
本手法は,2次元Creo-EM画像からの向きをエンドツーエンドで効果的に復元することを示し,不確実性を含むことにより,データセットを3次元レベルで直接クリーンアップすることができる。
論文 参考訳(メタデータ) (2023-07-19T09:09:24Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
既存の検出方法は、パラメータ化バウンディングボックス(BBox)を使用して(水平)オブジェクトをモデル化し、検出する。
このような機構は回転検出に有効な回帰損失を構築するのに基本的な限界があると主張する。
回転した物体をガウス分布としてモデル化することを提案する。
2次元から3次元へのアプローチを、方向推定を扱うアルゴリズム設計により拡張する。
論文 参考訳(メタデータ) (2022-09-22T07:50:48Z) - E-Graph: Minimal Solution for Rigid Rotation with Extensibility Graphs [61.552125054227595]
重なり合う領域を持たない2つの画像間の相対的な回転推定を解くために,新しい最小解を提案する。
E-Graphに基づいて、回転推定問題はより単純でエレガントになる。
回転推定戦略を6-DoFカメラのポーズと高密度3Dメッシュモデルを得る完全カメラ追跡マッピングシステムに組み込む。
論文 参考訳(メタデータ) (2022-07-20T16:11:48Z) - Globally Optimal Relative Pose Estimation with Gravity Prior [63.74377065002315]
例えば、車やUAVで使われるスマートフォン、タブレット、カメラシステムは、通常は重力ベクトルを正確に測定できるIMUを備えている。
我々は,最小二乗の意味での代数的誤差を最小限に抑え,過度に決定されたポーズにおける相対的なポーズを推定する,新しいグローバル最適解法を提案する。
提案した解法は、約50万枚の画像対を持つ4つの実世界のデータセットの最先端の解法と比較される。
論文 参考訳(メタデータ) (2020-12-01T13:09:59Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
本稿では、この局所最適問題を解くために、回転回帰のための離散連続的な新しい定式化を提案する。
我々はSO(3)の回転アンカーを均一にサンプリングし、各アンカーから目標への制約付き偏差を予測し、最適な予測を選択するための不確実性スコアを出力する。
LINEMOD と YCB-Video の2つのベンチマーク実験により,提案手法が最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-02-29T06:24:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。