Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling
- URL: http://arxiv.org/abs/2308.10705v1
- Date: Fri, 18 Aug 2023 16:41:57 GMT
- Title: Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling
- Authors: Haorui Ji, Hui Deng, Yuchao Dai, Hongdong Li
- Abstract summary: We propose a new modeling method for human pose deformations and design an accompanying diffusion-based motion prior.
Inspired by the field of non-rigid structure-from-motion, we divide the task of reconstructing 3D human skeletons in motion into the estimation of a 3D reference skeleton.
A mixed spatial-temporal NRSfMformer is used to simultaneously estimate the 3D reference skeleton and the skeleton deformation of each frame from 2D observations sequence.
- Score: 83.76377808476039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most of the previous 3D human pose estimation work relied on the powerful
memory capability of the network to obtain suitable 2D-3D mappings from the
training data. Few works have studied the modeling of human posture deformation
in motion. In this paper, we propose a new modeling method for human pose
deformations and design an accompanying diffusion-based motion prior. Inspired
by the field of non-rigid structure-from-motion, we divide the task of
reconstructing 3D human skeletons in motion into the estimation of a 3D
reference skeleton, and a frame-by-frame skeleton deformation. A mixed
spatial-temporal NRSfMformer is used to simultaneously estimate the 3D
reference skeleton and the skeleton deformation of each frame from 2D
observations sequence, and then sum them to obtain the pose of each frame.
Subsequently, a loss term based on the diffusion model is used to ensure that
the pipeline learns the correct prior motion knowledge. Finally, we have
evaluated our proposed method on mainstream datasets and obtained superior
results outperforming the state-of-the-art.
Related papers
- SkelFormer: Markerless 3D Pose and Shape Estimation using Skeletal Transformers [57.46911575980854]
We introduce SkelFormer, a novel markerless motion capture pipeline for multi-view human pose and shape estimation.
Our method first uses off-the-shelf 2D keypoint estimators, pre-trained on large-scale in-the-wild data, to obtain 3D joint positions.
Next, we design a regression-based inverse-kinematic skeletal transformer that maps the joint positions to pose and shape representations from heavily noisy observations.
arXiv Detail & Related papers (2024-04-19T04:51:18Z) - EVOPOSE: A Recursive Transformer For 3D Human Pose Estimation With
Kinematic Structure Priors [72.33767389878473]
We propose a transformer-based model EvoPose to introduce the human body prior knowledge for 3D human pose estimation effectively.
A Structural Priors Representation (SPR) module represents human priors as structural features carrying rich body patterns.
A Recursive Refinement (RR) module is applied to the 3D pose outputs by utilizing estimated results and further injects human priors simultaneously.
arXiv Detail & Related papers (2023-06-16T04:09:16Z) - Learning Temporal 3D Human Pose Estimation with Pseudo-Labels [3.0954251281114513]
We present a simple, yet effective, approach for self-supervised 3D human pose estimation.
We rely on triangulating 2D body pose estimates of a multiple-view camera system.
Our method achieves state-of-the-art performance in the Human3.6M and MPI-INF-3DHP benchmarks.
arXiv Detail & Related papers (2021-10-14T17:40:45Z) - HuMoR: 3D Human Motion Model for Robust Pose Estimation [100.55369985297797]
HuMoR is a 3D Human Motion Model for Robust Estimation of temporal pose and shape.
We introduce a conditional variational autoencoder, which learns a distribution of the change in pose at each step of a motion sequence.
We demonstrate that our model generalizes to diverse motions and body shapes after training on a large motion capture dataset.
arXiv Detail & Related papers (2021-05-10T21:04:55Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
Generalizability of human pose estimation models developed using supervision on large-scale in-studio datasets remains questionable.
We propose a novel kinematic-structure-preserved unsupervised 3D pose estimation framework, which is not restrained by any paired or unpaired weak supervisions.
Our proposed model employs three consecutive differentiable transformations named as forward-kinematics, camera-projection and spatial-map transformation.
arXiv Detail & Related papers (2020-06-24T23:56:33Z) - Anatomy-aware 3D Human Pose Estimation with Bone-based Pose
Decomposition [92.99291528676021]
Instead of directly regressing the 3D joint locations, we decompose the task into bone direction prediction and bone length prediction.
Our motivation is the fact that the bone lengths of a human skeleton remain consistent across time.
Our full model outperforms the previous best results on Human3.6M and MPI-INF-3DHP datasets.
arXiv Detail & Related papers (2020-02-24T15:49:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.