論文の概要: Rethinking Person Re-identification from a Projection-on-Prototypes
Perspective
- arxiv url: http://arxiv.org/abs/2308.10717v1
- Date: Mon, 21 Aug 2023 13:38:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 13:18:04.317518
- Title: Rethinking Person Re-identification from a Projection-on-Prototypes
Perspective
- Title(参考訳): 投影型プロトタイプの観点からの人物再識別の再考
- Authors: Qizao Wang, Xuelin Qian, Bin Li, Yanwei Fu, Xiangyang Xue
- Abstract要約: 検索タスクとしてのPerson Re-IDentification(Re-ID)は,過去10年間で大きな発展を遂げてきた。
本稿では,新しいベースライン ProNet を提案する。
4つのベンチマークの実験では、提案したProNetは単純だが有効であり、以前のベースラインを大きく上回っている。
- 参考スコア(独自算出の注目度): 84.24742313520811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Person Re-IDentification (Re-ID) as a retrieval task, has achieved tremendous
development over the past decade. Existing state-of-the-art methods follow an
analogous framework to first extract features from the input images and then
categorize them with a classifier. However, since there is no identity overlap
between training and testing sets, the classifier is often discarded during
inference. Only the extracted features are used for person retrieval via
distance metrics. In this paper, we rethink the role of the classifier in
person Re-ID, and advocate a new perspective to conceive the classifier as a
projection from image features to class prototypes. These prototypes are
exactly the learned parameters of the classifier. In this light, we describe
the identity of input images as similarities to all prototypes, which are then
utilized as more discriminative features to perform person Re-ID. We thereby
propose a new baseline ProNet, which innovatively reserves the function of the
classifier at the inference stage. To facilitate the learning of class
prototypes, both triplet loss and identity classification loss are applied to
features that undergo the projection by the classifier. An improved version of
ProNet++ is presented by further incorporating multi-granularity designs.
Experiments on four benchmarks demonstrate that our proposed ProNet is simple
yet effective, and significantly beats previous baselines. ProNet++ also
achieves competitive or even better results than transformer-based competitors.
- Abstract(参考訳): 検索タスクとしてのPerson Re-IDentification(Re-ID)は,過去10年間で大きな発展を遂げてきた。
既存の最先端手法は類似のフレームワークに従い、まず入力画像から特徴を抽出し、分類器で分類する。
しかし、トレーニングセットとテストセットの間に同一性が重複しないため、分類器はしばしば推論中に破棄される。
抽出された特徴のみが距離測定による人物検索に使用される。
本稿では,人物再識別における分類器の役割を再考し,画像特徴からクラスプロトタイプへの投影として分類器を想定する新たな視点を提唱する。
これらのプロトタイプは、まさに分類器の学習したパラメータである。
この光では,入力画像の同一性をプロトタイプと類似点として記述し,さらに識別的特徴として利用して人物のRe-IDを行う。
そこで本研究では,推論段階での分類器の機能を革新的に予約する新しいベースライン・プロネットを提案する。
クラスプロトタイプの学習を容易にするために、三重項損失と識別分類損失の両方を分類器によって投影される特徴に適用する。
pronet++の改良版は、マルチグラニュラデザインをさらに取り入れることで提供される。
4つのベンチマークによる実験により,提案するpronetは単純かつ効果的であり,従来のベースラインを大きく上回ることを示した。
ProNet++は、トランスフォーマーベースの競合よりも、競争力や結果も向上している。
関連論文リスト
- Negative Prototypes Guided Contrastive Learning for WSOD [8.102080369924911]
近年,画像レベルのアノテーションのみを持つ弱監視対象検出(WSOD)が注目されている。
本稿では,Native Prototypes Guided Contrastive Learning Architectureを提案する。
提案手法は最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-04T08:16:26Z) - PDiscoNet: Semantically consistent part discovery for fine-grained
recognition [62.12602920807109]
画像レベルのクラスラベルのみを用いて,対象部品の発見を推奨する先行情報とともにPDiscoNetを提案する。
CUB,CelebA,PartImageNet で得られた結果から,提案手法は従来手法よりもかなり優れた部分発見性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-09-06T17:19:29Z) - Automatically Discovering Novel Visual Categories with Self-supervised
Prototype Learning [68.63910949916209]
本稿では,大規模な画像収集において未知のカテゴリを識別することを目的とした,新しいカテゴリ発見(NCD)の課題に取り組む。
本稿では,プロトタイプ表現学習とプロトタイプ自己学習という,2つの主要な段階からなる適応型プロトタイプ学習手法を提案する。
本研究では,4つのベンチマークデータセットについて広範な実験を行い,提案手法の有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-08-01T16:34:33Z) - Weakly Supervised 3D Point Cloud Segmentation via Multi-Prototype
Learning [37.76664203157892]
ここでの根本的な課題は、局所幾何学構造の大きなクラス内変異であり、結果として意味クラス内のサブクラスとなる。
この直感を活用し、各サブクラスの個別分類器を維持することを選択します。
我々の仮説はまた、追加アノテーションのコストを伴わずにセマンティックサブクラスの一貫した発見を前提に検証されている。
論文 参考訳(メタデータ) (2022-05-06T11:07:36Z) - APANet: Adaptive Prototypes Alignment Network for Few-Shot Semantic
Segmentation [56.387647750094466]
Few-shotのセマンティックセマンティックセマンティクスは、指定されたクエリイメージに、ラベル付きサポートイメージのみで、新規クラスのオブジェクトをセグメントすることを目的としている。
ほとんどの高度なソリューションは、各クエリ機能を学習したクラス固有のプロトタイプにマッチさせることでセグメンテーションを実行するメトリクス学習フレームワークを利用している。
本稿では,クラス固有およびクラス非依存のプロトタイプを導入することで,適応型プロトタイプ表現を提案する。
論文 参考訳(メタデータ) (2021-11-24T04:38:37Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
本稿では,FSSタスクに適合する2つの特徴的コントラスト学習手法を提案する。
第一の考え方は、プロトタイプの特徴空間におけるクラス内距離を減少させながら、クラス間距離を増やすことで、プロトタイプをより差別的にすることである。
提案手法は,PASCAL-5iおよびCOCO-20iデータセット上で,最先端のFSS手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-09T08:14:50Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。