Hybrid Algorithm of Linear Programming Relaxation and Quantum Annealing
- URL: http://arxiv.org/abs/2308.10765v1
- Date: Mon, 21 Aug 2023 14:53:43 GMT
- Title: Hybrid Algorithm of Linear Programming Relaxation and Quantum Annealing
- Authors: Taisei Takabayashi, Masayuki Ohzeki
- Abstract summary: One approach involves obtaining an approximate solution using classical algorithms and refining it using quantum annealing (QA)
We propose a method that uses the simple continuous relaxation technique called linear programming (LP) relaxation.
- Score: 0.6526824510982802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The demand for classical-quantum hybrid algorithms to solve large-scale
combinatorial optimization problems using quantum annealing (QA) has increased.
One approach involves obtaining an approximate solution using classical
algorithms and refining it using QA. In previous studies, such variables were
determined using molecular dynamics (MD) as a continuous optimization method.
We propose a method that uses the simple continuous relaxation technique called
linear programming (LP) relaxation. Our method demonstrated superiority through
comparative experiments with the minimum vertex cover problem versus the
previous MD-based approach. Furthermore, the hybrid approach of LP relaxation
and simulated annealing showed advantages in accuracy and speed compared to
solving with simulated annealing alone.
Related papers
- Hybrid Quantum-HPC Solutions for Max-Cut: Bridging Classical and Quantum Algorithms [0.0]
We develop a theoretical model to analyze the time complexity, scalability, and communication overhead in hybrid systems.
We evaluate QAOA's performance on small-scale Max-Cut instances, benchmarking its runtime, solution accuracy, and resource utilization.
arXiv Detail & Related papers (2024-10-21T04:10:54Z) - A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
We propose a simulation-free algorithm for the solution of generic problems in optimal control (SOC)
Unlike existing methods, our approach does not require the solution of an adjoint problem.
arXiv Detail & Related papers (2024-10-07T16:16:53Z) - Integrating Quantum Algorithms Into Classical Frameworks: A Predictor-corrector Approach Using HHL [0.562479170374811]
We adapt a well-known algorithm for linear systems of equations, originally proposed by Harrow, Hassidim and Lloyd (HHL), by adapting it into a predictor-corrector instead of a direct solver.
This strategy enables the intelligent omission of computationally costly steps commonly found in many classical algorithms, while simultaneously mitigating the notorious readout problems associated with extracting a quantum state.
The versatility of the approach is illustrated through applications in various fields such as smoothed particle hydrodynamics, plasma simulations, and reactive flow configurations.
arXiv Detail & Related papers (2024-06-28T15:31:10Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Linear combination of Hamiltonian simulation for nonunitary dynamics
with optimal state preparation cost [8.181184006712785]
We propose a simple method for simulating a general class of non-unitary dynamics as a linear combination of Hamiltonian simulation problems.
We also demonstrate an application for open quantum dynamics simulation using the complex absorbing potential method with near-optimal dependence on all parameters.
arXiv Detail & Related papers (2023-03-02T07:37:54Z) - A conditional gradient homotopy method with applications to Semidefinite
Programming [1.6369790794838281]
homotopy-based conditional gradient method for solving convex optimization problems with a large number of simple conic constraints.
Our theoretical complexity is competitive when confronted to state-of-the-art SDP, with the decisive advantage of cheap projection-frees.
arXiv Detail & Related papers (2022-07-07T05:48:27Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.