Bayesian polynomial neural networks and polynomial neural ordinary
differential equations
- URL: http://arxiv.org/abs/2308.10892v2
- Date: Fri, 25 Aug 2023 05:05:06 GMT
- Title: Bayesian polynomial neural networks and polynomial neural ordinary
differential equations
- Authors: Colby Fronk and Jaewoong Yun and Prashant Singh and Linda Petzold
- Abstract summary: Symbolic regression with neural networks and neural ordinary differential equations (ODEs) are powerful approaches for equation recovery of many science and engineering problems.
These methods provide point estimates for the model parameters and are currently unable to accommodate noisy data.
We address this challenge by developing and validating the following inference methods: the Laplace approximation, Markov Chain Monte Carlo sampling methods, and Bayesian variational inference.
- Score: 4.550705124365277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Symbolic regression with polynomial neural networks and polynomial neural
ordinary differential equations (ODEs) are two recent and powerful approaches
for equation recovery of many science and engineering problems. However, these
methods provide point estimates for the model parameters and are currently
unable to accommodate noisy data. We address this challenge by developing and
validating the following Bayesian inference methods: the Laplace approximation,
Markov Chain Monte Carlo (MCMC) sampling methods, and variational inference. We
have found the Laplace approximation to be the best method for this class of
problems. Our work can be easily extended to the broader class of symbolic
neural networks to which the polynomial neural network belongs.
Related papers
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
The study uses a feedforward neural network model and error backpropagation principles, utilizing automatic differentiation (AD) to compute the loss function.
The numerical efficiency and accuracy of the CSNN model are investigated through testing on elliptic partial differential equations, and it is compared with the well-known Physics-Informed Neural Network(PINN) method.
arXiv Detail & Related papers (2024-06-06T05:31:45Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - NeuralEF: Deconstructing Kernels by Deep Neural Networks [47.54733625351363]
Traditional nonparametric solutions based on the Nystr"om formula suffer from scalability issues.
Recent work has resorted to a parametric approach, i.e., training neural networks to approximate the eigenfunctions.
We show that these problems can be fixed by using a new series of objective functions that generalizes to space of supervised and unsupervised learning problems.
arXiv Detail & Related papers (2022-04-30T05:31:07Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Towards a mathematical framework to inform Neural Network modelling via
Polynomial Regression [0.0]
It is shown that almost identical predictions can be made when certain conditions are met locally.
When learning from generated data, the proposed method producess that approximate correctly the data locally.
arXiv Detail & Related papers (2021-02-07T17:56:16Z) - Computational characteristics of feedforward neural networks for solving
a stiff differential equation [0.0]
We study the solution of a simple but fundamental stiff ordinary differential equation modelling a damped system.
We show that it is possible to identify preferable choices to be made for parameters and methods.
Overall we extend the current literature in the field by showing what can be done in order to obtain reliable and accurate results by the neural network approach.
arXiv Detail & Related papers (2020-12-03T12:22:24Z) - Unsupervised Learning of Solutions to Differential Equations with
Generative Adversarial Networks [1.1470070927586016]
We develop a novel method for solving differential equations with unsupervised neural networks.
We show that our method, which we call Differential Equation GAN (DEQGAN), can obtain multiple orders of magnitude lower mean squared errors.
arXiv Detail & Related papers (2020-07-21T23:36:36Z) - Disentangling the Gauss-Newton Method and Approximate Inference for
Neural Networks [96.87076679064499]
We disentangle the generalized Gauss-Newton and approximate inference for Bayesian deep learning.
We find that the Gauss-Newton method simplifies the underlying probabilistic model significantly.
The connection to Gaussian processes enables new function-space inference algorithms.
arXiv Detail & Related papers (2020-07-21T17:42:58Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.