論文の概要: PrAIoritize: Automated Early Prediction and Prioritization of Vulnerabilities in Smart Contracts
- arxiv url: http://arxiv.org/abs/2308.11082v2
- Date: Wed, 15 May 2024 12:50:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 18:31:50.421380
- Title: PrAIoritize: Automated Early Prediction and Prioritization of Vulnerabilities in Smart Contracts
- Title(参考訳): PrAIoritize:スマートコントラクトにおける脆弱性の早期予測と優先順位付けを自動化する
- Authors: Majd Soud, Grischa Liebel, Mohammad Hamdaqa,
- Abstract要約: スマートコントラクトは、未公表の脆弱性とコードの弱点のために、数多くのセキュリティ脅威を引き起こす。
スマートコントラクトのセキュリティには、効率的な優先順位付けが不可欠です。
我々の研究は、重要なコードの弱点を優先順位付けし予測するための自動アプローチPrAIoritizeを提供することを目的としています。
- 参考スコア(独自算出の注目度): 1.081463830315253
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Context:Smart contracts are prone to numerous security threats due to undisclosed vulnerabilities and code weaknesses. In Ethereum smart contracts, the challenges of timely addressing these code weaknesses highlight the critical need for automated early prediction and prioritization during the code review process. Efficient prioritization is crucial for smart contract security. Objective:Toward this end, our research aims to provide an automated approach, PrAIoritize, for prioritizing and predicting critical code weaknesses in Ethereum smart contracts during the code review process. Method: To do so, we collected smart contract code reviews sourced from Open Source Software (OSS) on GitHub and the Common Vulnerabilities and Exposures (CVE) database. Subsequently, we developed PrAIoritize, an innovative automated prioritization approach. PrAIoritize integrates advanced Large Language Models (LLMs) with sophisticated natural language processing (NLP) techniques. PrAIoritize automates code review labeling by employing a domain-specific lexicon of smart contract weaknesses and their impacts. Following this, feature engineering is conducted for code reviews, and a pre-trained DistilBERT model is utilized for priority classification. Finally, the model is trained and evaluated using code reviews of smart contracts. Results: Our evaluation demonstrates significant improvement over state-of-the-art baselines and commonly used pre-trained models (e.g. T5) for similar classification tasks, with 4.82\%-27.94\% increase in F-measure, precision, and recall. Conclusion: By leveraging PrAIoritize, practitioners can efficiently prioritize smart contract code weaknesses, addressing critical code weaknesses promptly and reducing the time and effort required for manual triage.
- Abstract(参考訳): コンテキスト:スマートコントラクトは、未公表の脆弱性とコードの弱点により、数多くのセキュリティ脅威を引き起こす。
Ethereumスマートコントラクトでは、これらのコードの弱点にタイムリーに対処する上での課題が、コードレビュープロセスにおける早期予測と優先順位付けの自動化に対する重要なニーズを浮き彫りにしている。
スマートコントラクトのセキュリティには、効率的な優先順位付けが不可欠です。
目的:この研究は、コードレビュープロセス中にEthereumスマートコントラクトにおける重要なコードの弱点を優先順位付けし、予測するための自動アプローチPrAIoritizeの提供を目的としています。
方法:GitHubのオープンソースソフトウェア(OSS)とCommon Vulnerabilities and Exposures(CVE)データベースから得られたスマートコントラクトコードレビューを収集しました。
その後,革新的な自動優先順位付け手法PrAIoritizeを開発した。
PrAIoritizeは高度なLarge Language Models(LLM)と高度な自然言語処理(NLP)技術を統合している。
PrAIoritizeは、スマートコントラクトの弱点とその影響のドメイン固有のレキシコンを使用することで、コードレビューのラベル付けを自動化する。
その後、コードレビューのために機能エンジニアリングが実施され、事前訓練された DistilBERT モデルが優先順位分類に使用される。
最後に、スマートコントラクトのコードレビューを使用してモデルをトレーニングし、評価する。
結果:本評価では,F値,精度,リコールが4.82\%-27.94\%増加し,最先端のベースラインと事前訓練済みモデル(例えばT5)に有意な改善が認められた。
結論:PrAIoritizeを活用することで、実践者はスマートコントラクトコードの弱点を効率的に優先順位付けし、重要なコードの弱点を迅速に解決し、手作業によるトリアージに必要な時間と労力を削減できます。
関連論文リスト
- Smart-LLaMA: Two-Stage Post-Training of Large Language Models for Smart Contract Vulnerability Detection and Explanation [21.39496709865097]
既存のスマートコントラクトの脆弱性検出方法は3つの大きな問題に直面している。
データセットの十分な品質、詳細な説明と正確な脆弱性位置の欠如。
LLaMA言語モデルに基づく高度な検出手法であるSmart-LLaMAを提案する。
論文 参考訳(メタデータ) (2024-11-09T15:49:42Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
本稿では,契約設計によるオンライン学習問題において,利害関係者の経済的利益を整合させる理論的枠組みを提案する。
計画問題に対して、遠目エージェントに対する最適契約を決定するための効率的な動的プログラミングアルゴリズムを設計する。
学習問題に対して,契約の堅牢な設計から探索と搾取のバランスに至るまでの課題を解き放つために,非回帰学習アルゴリズムの汎用設計を導入する。
論文 参考訳(メタデータ) (2024-07-01T16:53:00Z) - Soley: Identification and Automated Detection of Logic Vulnerabilities in Ethereum Smart Contracts Using Large Language Models [1.081463830315253]
GitHubのコード変更から抽出された実世界のスマートコントラクトのロジック脆弱性を実証的に調査する。
本稿では,スマートコントラクトにおける論理的脆弱性の自動検出手法であるSoleyを紹介する。
スマートコントラクト開発者が実際のシナリオでこれらの脆弱性に対処するために使用する緩和戦略について検討する。
論文 参考訳(メタデータ) (2024-06-24T00:15:18Z) - Vulnerabilities of smart contracts and mitigation schemes: A Comprehensive Survey [0.6554326244334866]
本稿では,開発者がセキュアなスマート技術を開発するのを支援することを目的とした,文献レビューと実験報告を組み合わせる。
頻繁な脆弱性とそれに対応する緩和ソリューションのリストを提供する。
サンプルのスマートコントラクト上でそれらを実行し、テストすることで、コミュニティが最も広く使用しているツールを評価します。
論文 参考訳(メタデータ) (2024-03-28T19:36:53Z) - An Empirical Study of AI-based Smart Contract Creation [4.801455786801489]
スマートコントラクト生成のためのChatGPTやGoogle Palm2のような大規模言語モデル(LLM)は、AIペアプログラマとして初めて確立されたインスタンスであるようだ。
本研究の目的は,LLMがスマートコントラクトに対して提供する生成コードの品質を評価することである。
論文 参考訳(メタデータ) (2023-08-05T21:38:57Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z) - A Bytecode-based Approach for Smart Contract Classification [10.483992071557195]
ブロックチェーンプラットフォームにデプロイされるスマートコントラクトの数は指数関数的に増えているため、ユーザは手動のスクリーニングによって望ましいサービスを見つけることが難しくなっている。
スマートコントラクト分類に関する最近の研究は、契約ソースコードに基づく自然言語処理(NLP)ソリューションに焦点を当てている。
本稿では,これらの問題を解決するために,ソースコードの代わりにコントラクトバイトコードの特徴に基づく分類モデルを提案する。
論文 参考訳(メタデータ) (2021-05-31T03:00:29Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。