Enhancing Graph Transformers with Hierarchical Distance Structural Encoding
- URL: http://arxiv.org/abs/2308.11129v4
- Date: Mon, 27 May 2024 11:04:29 GMT
- Title: Enhancing Graph Transformers with Hierarchical Distance Structural Encoding
- Authors: Yuankai Luo, Hongkang Li, Lei Shi, Xiao-Ming Wu,
- Abstract summary: This paper presents a Hierarchical Distance Structural (HDSE) method to model node distances in a graph.
We introduce a novel framework to seamlessly integrate HDSE into the attention mechanism of existing graph transformers.
We demonstrate that graph transformers with HDSE excel in graph classification, regression on 7 graph-level datasets, and node classification on 11 large-scale graphs.
- Score: 9.070055955084364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph transformers need strong inductive biases to derive meaningful attention scores. Yet, current methods often fall short in capturing longer ranges, hierarchical structures, or community structures, which are common in various graphs such as molecules, social networks, and citation networks. This paper presents a Hierarchical Distance Structural Encoding (HDSE) method to model node distances in a graph, focusing on its multi-level, hierarchical nature. We introduce a novel framework to seamlessly integrate HDSE into the attention mechanism of existing graph transformers, allowing for simultaneous application with other positional encodings. To apply graph transformers with HDSE to large-scale graphs, we further propose a high-level HDSE that effectively biases the linear transformers towards graph hierarchies. We theoretically prove the superiority of HDSE over shortest path distances in terms of expressivity and generalization. Empirically, we demonstrate that graph transformers with HDSE excel in graph classification, regression on 7 graph-level datasets, and node classification on 11 large-scale graphs, including those with up to a billion nodes.
Related papers
- SGFormer: Single-Layer Graph Transformers with Approximation-Free Linear Complexity [74.51827323742506]
We evaluate the necessity of adopting multi-layer attentions in Transformers on graphs.
We show that one-layer propagation can be reduced to one-layer propagation, with the same capability for representation learning.
It suggests a new technical path for building powerful and efficient Transformers on graphs.
arXiv Detail & Related papers (2024-09-13T17:37:34Z) - Topology-Informed Graph Transformer [7.857955053895979]
'Topology-Informed Graph Transformer (TIGT)' is a novel transformer enhancing both discriminative power in detecting graph isomorphisms and the overall performance of Graph Transformers.
TIGT consists of four components: A topological positional embedding layer using non-isomorphic universal covers based on cyclic subgraphs of graphs to ensure unique graph representation.
TIGT outperforms previous Graph Transformers in classifying synthetic dataset aimed at distinguishing isomorphism classes of graphs.
arXiv Detail & Related papers (2024-02-03T03:17:44Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations [75.71298846760303]
We show that a one-layer attention can bring up surprisingly competitive performance across node property prediction benchmarks.
We frame the proposed scheme as Simplified Graph Transformers (SGFormer), which is empowered by a simple attention model.
We believe the proposed methodology alone enlightens a new technical path of independent interest for building Transformers on large graphs.
arXiv Detail & Related papers (2023-06-19T08:03:25Z) - Diffusing Graph Attention [15.013509382069046]
We develop a new model for Graph Transformers that integrates the arbitrary graph structure into the architecture.
GD learns to extract structural and positional relationships between distant nodes in the graph, which it then uses to direct the Transformer's attention and node representation.
Experiments on eight benchmarks show Graph diffuser to be a highly competitive model, outperforming the state-of-the-art in a diverse set of domains.
arXiv Detail & Related papers (2023-03-01T16:11:05Z) - Transformers over Directed Acyclic Graphs [6.263470141349622]
We study transformers over directed acyclic graphs (DAGs) and propose architecture adaptations tailored to DAGs.
We show that it is effective in making graph transformers generally outperform graph neural networks tailored to DAGs and in improving SOTA graph transformer performance in terms of both quality and efficiency.
arXiv Detail & Related papers (2022-10-24T12:04:52Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - Do Transformers Really Perform Bad for Graph Representation? [62.68420868623308]
We present Graphormer, which is built upon the standard Transformer architecture.
Our key insight to utilizing Transformer in the graph is the necessity of effectively encoding the structural information of a graph into the model.
arXiv Detail & Related papers (2021-06-09T17:18:52Z) - Rethinking Graph Transformers with Spectral Attention [13.068288784805901]
We present the $textitSpectral Attention Network$ (SAN), which uses a learned positional encoding (LPE) to learn the position of each node in a given graph.
By leveraging the full spectrum of the Laplacian, our model is theoretically powerful in distinguishing graphs, and can better detect similar sub-structures from their resonance.
Our model performs on par or better than state-of-the-art GNNs, and outperforms any attention-based model by a wide margin.
arXiv Detail & Related papers (2021-06-07T18:11:11Z) - A Generalization of Transformer Networks to Graphs [5.736353542430439]
We introduce a graph transformer with four new properties compared to the standard model.
The architecture is extended to edge feature representation, which can be critical to tasks s.a. chemistry (bond type) or link prediction (entity relationship in knowledge graphs)
arXiv Detail & Related papers (2020-12-17T16:11:47Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
We present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors.
Motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships.
arXiv Detail & Related papers (2020-10-09T07:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.