論文の概要: High Dynamic Range Imaging of Dynamic Scenes with Saturation
Compensation but without Explicit Motion Compensation
- arxiv url: http://arxiv.org/abs/2308.11140v1
- Date: Tue, 22 Aug 2023 02:44:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 19:29:37.689771
- Title: High Dynamic Range Imaging of Dynamic Scenes with Saturation
Compensation but without Explicit Motion Compensation
- Title(参考訳): 運動補償を伴わない飽和補償を伴う動的シーンの高ダイナミックレンジイメージング
- Authors: Haesoo Chung and Nam Ik Cho
- Abstract要約: 高ダイナミックレンジ(LDR)イメージングは、カメラセンサの限界により大量の情報が失われるため、非常に難しい課題である。
HDRイメージングでは、複数の低ダイナミックレンジ(LDR)画像を露出の変化で捉え、より多くの情報を収集する手法がある。
既存の手法のほとんどはゴーストのアーチファクトを減らすために運動補償に重点を置いているが、それでも満足できない結果をもたらす。
- 参考スコア(独自算出の注目度): 20.911738532410766
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: High dynamic range (HDR) imaging is a highly challenging task since a large
amount of information is lost due to the limitations of camera sensors. For HDR
imaging, some methods capture multiple low dynamic range (LDR) images with
altering exposures to aggregate more information. However, these approaches
introduce ghosting artifacts when significant inter-frame motions are present.
Moreover, although multi-exposure images are given, we have little information
in severely over-exposed areas. Most existing methods focus on motion
compensation, i.e., alignment of multiple LDR shots to reduce the ghosting
artifacts, but they still produce unsatisfying results. These methods also
rather overlook the need to restore the saturated areas. In this paper, we
generate well-aligned multi-exposure features by reformulating a motion
alignment problem into a simple brightness adjustment problem. In addition, we
propose a coarse-to-fine merging strategy with explicit saturation
compensation. The saturated areas are reconstructed with similar well-exposed
content using adaptive contextual attention. We demonstrate that our method
outperforms the state-of-the-art methods regarding qualitative and quantitative
evaluations.
- Abstract(参考訳): 高ダイナミックレンジ(HDR)イメージングは、カメラセンサの限界により大量の情報が失われるため、非常に難しい課題である。
HDRイメージングでは、複数の低ダイナミックレンジ(LDR)画像を露出の変化で捉え、より多くの情報を収集する手法がある。
しかし、これらのアプローチはフレーム間の大きな動きがあるときにゴーストアーティファクトを導入する。
また,マルチ露光画像が提供されるが,過剰露光領域の情報は少ない。
既存の手法のほとんどは、複数のldrショットをアライメントしてゴーストアーティファクトを減らす動き補償に焦点を当てているが、それでも満足できない結果をもたらす。
これらの手法は、飽和領域を回復する必要性をむしろ見落としている。
本稿では,動作アライメント問題を簡易な輝度調整問題に再構成し,アライメント特性の整列化を行う。
さらに,飽和補償を明示した粗粒間マージ戦略を提案する。
飽和領域は、適応的な文脈的注意力を用いて、同様のよく露出した内容で再構成される。
本手法は,定性評価と定量的評価に関して,最先端の手法よりも優れていることを示す。
関連論文リスト
- Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
高ダイナミックレンジ(LDR)画像は、既存のディープニューラルネットワーク(DNN)技術により、複数の低ダイナミックレンジ(LDR)画像から復元することができる。
DNNは、LDR画像が飽和度と大きな動きを持つ場合、ゴーストアーティファクトを生成する。
拡散モデルの条件としてLDR特徴を利用する画像生成としてHDRデゴースト問題を定式化する。
論文 参考訳(メタデータ) (2023-11-02T01:53:55Z) - Single Image LDR to HDR Conversion using Conditional Diffusion [18.466814193413487]
デジタル画像は現実的なシーンを再現することを目的としているが、Low Dynamic Range(LDR)カメラは現実のシーンの広いダイナミックレンジを表現できない。
本稿では,影やハイライトから複雑な詳細を復元するための深層学習に基づくアプローチを提案する。
提案フレームワークにディープベースオートエンコーダを組み込んで,コンディショニングに使用するLDR画像の潜在表現の質を高める。
論文 参考訳(メタデータ) (2023-07-06T07:19:47Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
そこで本研究では,SSHDRと呼ばれる2段階の訓練を通した短距離HDRイメージングを実現するための,新しい半教師付きアプローチを提案する。
以前の方法とは異なり、コンテンツを直接回復し、ゴーストを同時に除去することは、最適に達成することが難しい。
実験により、SSHDRは異なるデータセットの内外における定量的かつ定性的に最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-14T03:42:51Z) - Multi-Exposure HDR Composition by Gated Swin Transformer [8.619880437958525]
本稿では,Swin Transformerに基づく新しいマルチ露光融合モデルを提案する。
露光空間ピラミッドにおける遠距離文脈依存性を自己認識機構により活用する。
実験により,本モデルが現在のマルチ露光HDR画像モデルと同等の精度が得られることが示された。
論文 参考訳(メタデータ) (2023-03-15T15:38:43Z) - Deep Progressive Feature Aggregation Network for High Dynamic Range
Imaging [24.94466716276423]
本研究では,動的シーンにおけるHDR画像の画質向上のための高度な特徴集約ネットワークを提案する。
提案手法は,高対応特徴を暗黙的にサンプリングし,それらを粗い方法で集約してアライメントする。
実験の結果,提案手法は異なるシーン下での最先端性能を実現することができることがわかった。
論文 参考訳(メタデータ) (2022-08-04T04:37:35Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
本稿では,露光ブラケット付きハンドヘルドカメラで撮影した原写真からの高解像度・高ダイナミックレンジカラー画像の再構成について紹介する。
提案アルゴリズムは,画像復元における最先端の学習手法と比較して,メモリ要求の少ない高速なアルゴリズムである。
実験では、ハンドヘルドカメラで野生で撮影された実際の写真に最大4ドル(約4,800円)の超高解像度な要素で優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-29T13:31:28Z) - Learning Regularized Multi-Scale Feature Flow for High Dynamic Range
Imaging [29.691689596845112]
正規化損失によって導かれるマルチスケールな特徴フローを学習しようとするディープネットワークを提案する。
まず、マルチスケールの特徴を抽出し、非参照画像から特徴を整列する。
調整後、異なる画像の特徴をマージするために残留チャネルアテンションブロックを使用する。
論文 参考訳(メタデータ) (2022-07-06T09:37:28Z) - FlexHDR: Modelling Alignment and Exposure Uncertainties for Flexible HDR
Imaging [0.9185931275245008]
高品質なHDR結果を生成するためにアライメントと露出の不確かさをモデル化する新しいHDRイメージング技術を提案する。
本研究では,HDRを意識した不確実性を考慮したアライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・
実験結果から,本手法は最先端の高画質HDR画像を最大0.8dBPSNRで生成できることがわかった。
論文 参考訳(メタデータ) (2022-01-07T14:27:17Z) - Exposure Trajectory Recovery from Motion Blur [90.75092808213371]
ダイナミックシーンにおける動きのぼやけは重要な研究テーマである。
本稿では、ぼやけた画像に含まれる動き情報を表す露光軌跡を定義する。
静止シャープ画像の画素方向の変位をモデル化するための新しい動きオフセット推定フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-06T05:23:33Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
マルチ露光LDR画像からHDR画像を合成するための新しいGANモデルHDR-GANを提案する。
本手法は,敵対学習を取り入れることで,欠落したコンテンツのある領域に忠実な情報を生成することができる。
論文 参考訳(メタデータ) (2020-07-03T11:42:35Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
本稿では,LDR画像形成パイプラインの領域知識をモデルに組み込むことを提案する。
我々は,HDRto-LDR画像形成パイプラインを(1)ダイナミックレンジクリッピング,(2)カメラ応答関数からの非線形マッピング,(3)量子化としてモデル化する。
提案手法は,最先端の単一画像HDR再構成アルゴリズムに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2020-04-02T17:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。