論文の概要: A Simple Framework for Multi-mode Spatial-Temporal Data Modeling
- arxiv url: http://arxiv.org/abs/2308.11204v1
- Date: Tue, 22 Aug 2023 05:41:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 13:45:22.363387
- Title: A Simple Framework for Multi-mode Spatial-Temporal Data Modeling
- Title(参考訳): 多モード空間時間データモデリングのための簡易フレームワーク
- Authors: Zihang Liu, Le Yu, Tongyu Zhu, Leiei Sun
- Abstract要約: 本稿では,マルチモード時空間データモデリングのための簡易なフレームワークを提案する。
具体的には、複数のモード間の接続を適応的に確立するために、一般的なクロスモード空間関係学習コンポーネントを設計する。
3つの実世界のデータセットの実験により、我々のモデルは、空間と時間の複雑さの低いベースラインを一貫して上回ります。
- 参考スコア(独自算出の注目度): 4.855443906457102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial-temporal data modeling aims to mine the underlying spatial
relationships and temporal dependencies of objects in a system. However, most
existing methods focus on the modeling of spatial-temporal data in a single
mode, lacking the understanding of multiple modes. Though very few methods have
been presented to learn the multi-mode relationships recently, they are built
on complicated components with higher model complexities. In this paper, we
propose a simple framework for multi-mode spatial-temporal data modeling to
bring both effectiveness and efficiency together. Specifically, we design a
general cross-mode spatial relationships learning component to adaptively
establish connections between multiple modes and propagate information along
the learned connections. Moreover, we employ multi-layer perceptrons to capture
the temporal dependencies and channel correlations, which are conceptually and
technically succinct. Experiments on three real-world datasets show that our
model can consistently outperform the baselines with lower space and time
complexity, opening up a promising direction for modeling spatial-temporal
data. The generalizability of the cross-mode spatial relationships learning
module is also validated.
- Abstract(参考訳): 空間時間データモデリングは、システム内のオブジェクトの空間的関係と時間的依存関係をマイニングすることを目的としている。
しかし、既存の手法のほとんどは、複数のモードの理解を欠いた単一のモードでの空間-時間データのモデリングに焦点を当てている。
近年、マルチモード関係を学習する手法はほとんど提示されていないが、より高度なモデル複雑度を持つ複雑なコンポーネントの上に構築されている。
本稿では,実効性と効率性を兼ね備えたマルチモード空間-時間データモデリングのための簡易なフレームワークを提案する。
具体的には、複数のモード間の接続を適応的に確立し、学習された接続に沿って情報を伝達する一般的なモード空間関係学習コンポーネントを設計する。
さらに,概念的かつ技術的に簡潔な時間依存性とチャネル相関を捉えるために,多層パーセプトロンを用いる。
3つの実世界のデータセットの実験により、我々のモデルは、空間と時間の複雑さの低いベースラインを一貫して上回り、空間時間データをモデル化するための有望な方向を開くことができる。
クロスモード空間関係学習モジュールの一般化可能性も検証した。
関連論文リスト
- ComboStoc: Combinatorial Stochasticity for Diffusion Generative Models [65.82630283336051]
拡散生成モデルの既存のトレーニングスキームにより,次元と属性の組み合わせによって区切られた空間が十分に標本化されていないことを示す。
構造を完全に活用するプロセスを構築し,ComboStocという名前でこの問題に対処する。
論文 参考訳(メタデータ) (2024-05-22T15:23:10Z) - Multi-Modality Spatio-Temporal Forecasting via Self-Supervised Learning [11.19088022423885]
そこで本稿では,MoSSL を利用した新しい学習フレームワークを提案する。
2つの実世界のMOSTデータセットの結果は、最先端のベースラインと比較して、我々のアプローチの優位性を検証する。
論文 参考訳(メタデータ) (2024-05-06T08:24:06Z) - Representation Alignment Contrastive Regularization for Multi-Object Tracking [29.837560662395713]
多目的追跡アルゴリズムのメインストリーム性能は、データアソシエーション段階における重時間関係のモデリングに依存する。
この研究は、深層学習に基づく時間的関係モデルを単純化し、データアソシエーション設計に解釈可能性を導入することを目的としている。
論文 参考訳(メタデータ) (2024-04-03T08:33:08Z) - A Decoupled Spatio-Temporal Framework for Skeleton-based Action
Segmentation [89.86345494602642]
既存の手法は、弱い時間的モデリング能力に制限されている。
この問題に対処するために、Decoupled Scoupled Framework (DeST)を提案する。
DeSTは計算量が少なく、現在の最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2023-12-10T09:11:39Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
交通予測は交通科学と人工知能における最も基本的な問題の一つである。
既存の手法では、長期的相関と短期的相関を同時にモデル化することはできない。
本稿では,GCRN(Graph Convolutional Recurrent Module)とグローバルアテンションモジュールからなる新しい時空間ニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-25T03:37:00Z) - Dynamic Spatiotemporal Graph Convolutional Neural Networks for Traffic
Data Imputation with Complex Missing Patterns [3.9318191265352196]
本稿では,DSTG(Dynamic Spatio Graph Contemporal Networks)と呼ばれる新しいディープラーニングフレームワークを提案する。
本稿では,動的空間依存のリアルタイム交通情報と道路ネットワーク構造をモデル化するためのグラフ構造推定手法を提案する。
提案手法は,既存の深層学習モデルより様々なシナリオにおいて優れており,グラフ構造推定手法はモデルの性能に寄与する。
論文 参考訳(メタデータ) (2021-09-17T05:47:17Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
モジュール構造とテンポラル構造の両方を同時に活用できる動的構造を利用するための一歩を踏み出します。
我々のモデルは利用可能なビューの数に対して堅牢であり、追加のトレーニングなしで新しいタスクに一般化できる。
論文 参考訳(メタデータ) (2020-07-13T17:44:30Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
生成モデル学習のための対照的なフレームワークを開発し、モダリティ間の共通性だけでなく、「関連」と「関連しない」マルチモーダルデータの区別によってモデルを訓練することができる。
提案手法では, 生成モデルを用いて, 関係のないサンプルから関連サンプルを正確に識別し, ラベルのない多モードデータの利用が可能となる。
論文 参考訳(メタデータ) (2020-07-02T15:08:11Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
本稿では,マルチスケールグラフ畳み込みと,G3Dという空間時間グラフ畳み込み演算子を結合する簡単な方法を提案する。
これらの提案を結合することにより,MS-G3Dという強力な特徴抽出器を開発し,そのモデルが3つの大規模データセット上で従来の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-03-31T11:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。