Uncertainty Estimation of Transformers' Predictions via Topological Analysis of the Attention Matrices
- URL: http://arxiv.org/abs/2308.11295v3
- Date: Tue, 17 Sep 2024 09:44:27 GMT
- Title: Uncertainty Estimation of Transformers' Predictions via Topological Analysis of the Attention Matrices
- Authors: Elizaveta Kostenok, Daniil Cherniavskii, Alexey Zaytsev,
- Abstract summary: Transformer-based language models have set new benchmarks across a wide range of NLP tasks.
reliably estimating the uncertainty of their predictions remains a significant challenge.
We tackle these limitations by harnessing the geometry of attention maps across multiple heads and layers to assess model confidence.
Our method significantly outperforms existing uncertainty estimation techniques on benchmarks for acceptability judgments and artificial text detection.
- Score: 3.1466086042810884
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Transformer-based language models have set new benchmarks across a wide range of NLP tasks, yet reliably estimating the uncertainty of their predictions remains a significant challenge. Existing uncertainty estimation (UE) techniques often fall short in classification tasks, either offering minimal improvements over basic heuristics or relying on costly ensemble models. Moreover, attempts to leverage common embeddings for UE in linear probing scenarios have yielded only modest gains, indicating that alternative model components should be explored. We tackle these limitations by harnessing the geometry of attention maps across multiple heads and layers to assess model confidence. Our approach extracts topological features from attention matrices, providing a low-dimensional, interpretable representation of the model's internal dynamics. Additionally, we introduce topological features to compare attention patterns across heads and layers. Our method significantly outperforms existing UE techniques on benchmarks for acceptability judgments and artificial text detection, offering a more efficient and interpretable solution for uncertainty estimation in large-scale language models.
Related papers
- Enhancing adversarial robustness in Natural Language Inference using explanations [41.46494686136601]
We cast the spotlight on the underexplored task of Natural Language Inference (NLI)
We validate the usage of natural language explanation as a model-agnostic defence strategy through extensive experimentation.
We research the correlation of widely used language generation metrics with human perception, in order for them to serve as a proxy towards robust NLI models.
arXiv Detail & Related papers (2024-09-11T17:09:49Z) - PerturBench: Benchmarking Machine Learning Models for Cellular Perturbation Analysis [14.526536510805755]
We present a comprehensive framework for predicting the effects of perturbations in single cells, designed to standardize benchmarking in this rapidly evolving field.
Our framework, PerturBench, includes a user-friendly platform, diverse datasets, metrics for fair model comparison, and detailed performance analysis.
arXiv Detail & Related papers (2024-08-20T07:40:20Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
Modern language models (LMs) pose a new challenge in capability assessment.
To be confident in our metrics, we need a new discipline of model metrology.
arXiv Detail & Related papers (2024-07-22T17:52:12Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Uncertainty Quantification for Bird's Eye View Semantic Segmentation: Methods and Benchmarks [10.193504550494486]
This paper introduces a benchmark for predictive uncertainty quantification in BEV segmentation.
It focuses on the effectiveness of predicted uncertainty in identifying misclassified and out-of-distribution pixels, as well as calibration.
We propose the Uncertainty-Focal-Cross-Entropy loss, designed for highly imbalanced data, which consistently improves the segmentation quality and calibration.
arXiv Detail & Related papers (2024-05-31T16:32:46Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
We propose a complete framework for extending concept-based interpretability methods to NLP.
We optimize for features whose existence causes the output predictions to change substantially.
Our method achieves superior results on predictive impact, usability, and faithfulness compared to the baselines.
arXiv Detail & Related papers (2023-05-03T14:48:27Z) - Estimating the Robustness of Classification Models by the Structure of
the Learned Feature-Space [10.418647759223964]
We argue that fixed testsets are only able to capture a small portion of possible data variations and are thus limited and prone to generate new overfitted solutions.
To overcome these drawbacks, we suggest to estimate the robustness of a model directly from the structure of its learned feature-space.
arXiv Detail & Related papers (2021-06-23T10:52:29Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
We propose a neural network-based system to predict human trajectory in crowds.
We learn interpretable rule-based intents, and then utilise the expressibility of neural networks to model scene-specific residual.
Our architecture is tested on the interaction-centric benchmark TrajNet++.
arXiv Detail & Related papers (2021-05-07T09:22:34Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
We propose Explainable Matrix (ExMatrix), a novel visualization method for Random Forest (RF) interpretability.
It employs a simple yet powerful matrix-like visual metaphor, where rows are rules, columns are features, and cells are rules predicates.
ExMatrix applicability is confirmed via different examples, showing how it can be used in practice to promote RF models interpretability.
arXiv Detail & Related papers (2020-05-08T21:03:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.