Protect Federated Learning Against Backdoor Attacks via Data-Free
Trigger Generation
- URL: http://arxiv.org/abs/2308.11333v1
- Date: Tue, 22 Aug 2023 10:16:12 GMT
- Title: Protect Federated Learning Against Backdoor Attacks via Data-Free
Trigger Generation
- Authors: Yanxin Yang, Ming Hu, Yue Cao, Jun Xia, Yihao Huang, Yang Liu,
Mingsong Chen
- Abstract summary: Federated Learning (FL) enables large-scale clients to collaboratively train a model without sharing their raw data.
Due to the lack of data auditing for untrusted clients, FL is vulnerable to poisoning attacks, especially backdoor attacks.
We propose a novel data-free trigger-generation-based defense approach based on the two characteristics of backdoor attacks.
- Score: 25.072791779134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a distributed machine learning paradigm, Federated Learning (FL) enables
large-scale clients to collaboratively train a model without sharing their raw
data. However, due to the lack of data auditing for untrusted clients, FL is
vulnerable to poisoning attacks, especially backdoor attacks. By using poisoned
data for local training or directly changing the model parameters, attackers
can easily inject backdoors into the model, which can trigger the model to make
misclassification of targeted patterns in images. To address these issues, we
propose a novel data-free trigger-generation-based defense approach based on
the two characteristics of backdoor attacks: i) triggers are learned faster
than normal knowledge, and ii) trigger patterns have a greater effect on image
classification than normal class patterns. Our approach generates the images
with newly learned knowledge by identifying the differences between the old and
new global models, and filters trigger images by evaluating the effect of these
generated images. By using these trigger images, our approach eliminates
poisoned models to ensure the updated global model is benign. Comprehensive
experiments demonstrate that our approach can defend against almost all the
existing types of backdoor attacks and outperform all the seven
state-of-the-art defense methods with both IID and non-IID scenarios.
Especially, our approach can successfully defend against the backdoor attack
even when 80\% of the clients are malicious.
Related papers
- Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Backdoor Attack with Mode Mixture Latent Modification [26.720292228686446]
We propose a backdoor attack paradigm that only requires minimal alterations to a clean model in order to inject the backdoor under the guise of fine-tuning.
We evaluate the effectiveness of our method on four popular benchmark datasets.
arXiv Detail & Related papers (2024-03-12T09:59:34Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
Federated learning systems are susceptible to poisoning attacks when malicious clients send false updates to the central server.
This paper proposes a new defense strategy, FedCPA (Federated learning with Critical Analysis)
Our attack-tolerant aggregation method is based on the observation that benign local models have similar sets of top-k and bottom-k critical parameters, whereas poisoned local models do not.
arXiv Detail & Related papers (2023-08-18T05:37:55Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
Federated learning enables learning from decentralized data sources without compromising privacy.
It is vulnerable to model poisoning attacks, where malicious clients interfere with the training process.
We propose a new defense mechanism that focuses on the client-side, called FedDefender, to help benign clients train robust local models.
arXiv Detail & Related papers (2023-07-18T08:00:41Z) - Mitigating Backdoors in Federated Learning with FLD [7.908496863030483]
Federated learning allows clients to collaboratively train a global model without uploading raw data for privacy preservation.
This feature has recently been found responsible for federated learning's vulnerability in the face of backdoor attacks.
We propose Federated Layer Detection (FLD), a novel model filtering approach for effectively defending against backdoor attacks.
arXiv Detail & Related papers (2023-03-01T07:54:54Z) - Invisible Backdoor Attack with Dynamic Triggers against Person
Re-identification [71.80885227961015]
Person Re-identification (ReID) has rapidly progressed with wide real-world applications, but also poses significant risks of adversarial attacks.
We propose a novel backdoor attack on ReID under a new all-to-unknown scenario, called Dynamic Triggers Invisible Backdoor Attack (DT-IBA)
We extensively validate the effectiveness and stealthiness of the proposed attack on benchmark datasets, and evaluate the effectiveness of several defense methods against our attack.
arXiv Detail & Related papers (2022-11-20T10:08:28Z) - Just Rotate it: Deploying Backdoor Attacks via Rotation Transformation [48.238349062995916]
We find that highly effective backdoors can be easily inserted using rotation-based image transformation.
Our work highlights a new, simple, physically realizable, and highly effective vector for backdoor attacks.
arXiv Detail & Related papers (2022-07-22T00:21:18Z) - DeepSight: Mitigating Backdoor Attacks in Federated Learning Through
Deep Model Inspection [26.593268413299228]
Federated Learning (FL) allows multiple clients to collaboratively train a Neural Network (NN) model on their private data without revealing the data.
DeepSight is a novel model filtering approach for mitigating backdoor attacks.
We show that it can mitigate state-of-the-art backdoor attacks with a negligible impact on the model's performance on benign data.
arXiv Detail & Related papers (2022-01-03T17:10:07Z) - Backdoor Attacks on Self-Supervised Learning [22.24046752858929]
We show that self-supervised learning methods are vulnerable to backdoor attacks.
An attacker poisons a part of the unlabeled data by adding a small trigger (known to the attacker) to the images.
We propose a knowledge distillation based defense algorithm that succeeds in neutralizing the attack.
arXiv Detail & Related papers (2021-05-21T04:22:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.