論文の概要: Semantic RGB-D Image Synthesis
- arxiv url: http://arxiv.org/abs/2308.11356v2
- Date: Tue, 19 Sep 2023 02:52:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 18:58:24.487298
- Title: Semantic RGB-D Image Synthesis
- Title(参考訳): 意味的RGB-D画像合成
- Authors: Shijie Li, Rong Li, Juergen Gall
- Abstract要約: この問題に対処するために,意味的RGB-D画像合成を導入する。
しかし、現在のアプローチはユニモーダルであり、マルチモーダルデータには対応できない。
意味的レイアウトのモーダル非依存情報とモーダル依存情報とを分離したマルチモーダルデータのジェネレータを提案する。
- 参考スコア(独自算出の注目度): 22.137419841504908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collecting diverse sets of training images for RGB-D semantic image
segmentation is not always possible. In particular, when robots need to operate
in privacy-sensitive areas like homes, the collection is often limited to a
small set of locations. As a consequence, the annotated images lack diversity
in appearance and approaches for RGB-D semantic image segmentation tend to
overfit the training data. In this paper, we thus introduce semantic RGB-D
image synthesis to address this problem. It requires synthesising a
realistic-looking RGB-D image for a given semantic label map. Current
approaches, however, are uni-modal and cannot cope with multi-modal data.
Indeed, we show that extending uni-modal approaches to multi-modal data does
not perform well. In this paper, we therefore propose a generator for
multi-modal data that separates modal-independent information of the semantic
layout from the modal-dependent information that is needed to generate an RGB
and a depth image, respectively. Furthermore, we propose a discriminator that
ensures semantic consistency between the label maps and the generated images
and perceptual similarity between the real and generated images. Our
comprehensive experiments demonstrate that the proposed method outperforms
previous uni-modal methods by a large margin and that the accuracy of an
approach for RGB-D semantic segmentation can be significantly improved by
mixing real and generated images during training.
- Abstract(参考訳): RGB-Dセマンティックイメージセグメンテーションのための多様なトレーニングイメージを収集することは必ずしも不可能である。
特に、ロボットが家のようなプライバシーに敏感な場所で操作する必要がある場合、収集は小さな場所に限定されることが多い。
その結果、注釈付き画像は外観の多様性を欠き、RGB-Dセマンティックイメージセグメンテーションのアプローチはトレーニングデータに過度に適合する傾向にある。
本稿では,この問題に対処する意味的RGB-D画像合成を提案する。
与えられたセマンティックラベルマップのために、現実的なRGB-D画像を合成する必要がある。
しかし、現在のアプローチはユニモーダルであり、マルチモーダルデータに対応できない。
実際、マルチモーダルデータへのユニモーダルアプローチの拡張はうまく機能しないことを示している。
そこで本稿では,RGBと深度画像を生成するために必要なモーダル依存情報から,意味的レイアウトのモーダル非依存情報を分離するマルチモーダルデータ生成器を提案する。
さらに,ラベルマップと生成画像間の意味的一貫性と,実画像と生成画像との知覚的類似性を保証する判別器を提案する。
提案手法は,実画像と生成画像とを混合することにより,従来のユニモーダル法を大きく上回り,rgb-d意味セグメンテーションへのアプローチの精度が大幅に向上することを示す。
関連論文リスト
- Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
生画像は、線形性や微細な量子化レベルなど、sRGB画像に対して明確な利点がある。
ストレージの要求が大きいため、一般ユーザからは広く採用されていない。
本稿では,メタデータとして,潜在空間におけるコンパクトな表現を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-21T06:59:07Z) - A Multi-modal Approach to Single-modal Visual Place Classification [2.580765958706854]
RGBと深度(D)を組み合わせたマルチセンサー融合アプローチが近年人気を集めている。
単一モードRGB画像分類タスクを擬似多モードRGB-D分類問題として再構成する。
これら2つのモダリティを適切に処理し、融合し、分類するための、実践的で完全に自己管理されたフレームワークについて説明する。
論文 参考訳(メタデータ) (2023-05-10T14:04:21Z) - Clothes Grasping and Unfolding Based on RGB-D Semantic Segmentation [21.950751953721817]
セグメンテーションのための双方向フラクタルクロスフュージョンネットワーク(BiFCNet)を提案する。
我々は、Fractal Cross FusionモジュールがRGBと深度データを融合するネットワークへの入力として、リッチな色特徴を持つRGB画像を使用する。
実データ収集のコストを削減するため,敵対的戦略に基づくデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2023-05-05T03:21:55Z) - Complementary Random Masking for RGB-Thermal Semantic Segmentation [63.93784265195356]
RGB-熱的セマンティックセグメンテーションは、悪天候や照明条件における信頼性の高いセマンティックセマンティックセマンティック理解を実現するための潜在的ソリューションである。
本稿では,1)RGB-T画像の相補的ランダムマスキング戦略,2)クリーンモードとマスク入力モードの自己蒸留損失を提案する。
3つのRGB-Tセマンティックセマンティックセグメンテーションベンチマークで最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-03-30T13:57:21Z) - DCANet: Differential Convolution Attention Network for RGB-D Semantic
Segmentation [2.2032272277334375]
深度データに対する幾何情報と局所範囲相関を考慮した画素差分畳み込みアテンション(DCA)モジュールを提案する。
DCAを拡張して、長距離コンテキスト依存を伝播する差分畳み込み注意(EDCA)をアンサンブルする。
DCAとEDCAで構築された2分岐ネットワークである差分畳み込みネットワーク(DCANet)は、2モーダルデータのローカルおよびグローバルな情報を融合するために提案されている。
論文 参考訳(メタデータ) (2022-10-13T05:17:34Z) - RGB-Multispectral Matching: Dataset, Learning Methodology, Evaluation [49.28588927121722]
ステレオマッチング対応を解くことで,解像度の異なる同期色(RGB)とマルチスペクトル画像(MS)の登録の問題に対処する。
室内環境における13の異なるシーンをフレーミングする新しいRGB-MSデータセットを導入し,34枚の画像対に半高解像度の高解像度の地上トラスラベルを付加したアノテートを行った。
そこで本研究では,RGBカメラを活用した自己指導型ディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-14T17:59:59Z) - Self-Supervised Modality-Aware Multiple Granularity Pre-Training for
RGB-Infrared Person Re-Identification [9.624510941236837]
Modality-Aware Multiple Granularity Learning (MMGL)は、ImageNetの事前学習に代わる自己教師付き事前学習である。
MMGLはImageNetの事前トレーニングよりも高速なトレーニング速度(数時間で収束)とデータ効率(5%のデータサイズ)で、より良い表現(+6.47% Rank-1)を学習する。
結果は、既存のさまざまなモデル、損失をうまく一般化し、データセット間で有望な転送可能性を持つことを示唆している。
論文 参考訳(メタデータ) (2021-12-12T04:40:33Z) - RGB-D Saliency Detection via Cascaded Mutual Information Minimization [122.8879596830581]
既存のRGB-Dサリエンシ検出モデルは、RGBと深さを効果的にマルチモーダル学習を実現するために明示的に奨励するものではない。
本稿では,RGB画像と深度データ間のマルチモーダル情報を「明示的」にモデル化するために,相互情報最小化による新しい多段階学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-15T12:31:27Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
我々は、自己教師付き表現学習を用いて、クロスモーダルオートエンコーダと深さ-輪郭推定という2つのプレテキストタスクを設計する。
我々のプレテキストタスクは、ネットワークがリッチなセマンティックコンテキストをキャプチャする事前トレーニングを実行するのに、少数のRGB-Dデータセットしか必要としない。
RGB-D SODにおけるクロスモーダル核融合の固有の問題として,マルチパス核融合モジュールを提案する。
論文 参考訳(メタデータ) (2021-01-29T09:16:06Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
深度情報はRGBD画像のセマンティックセグメンテーションにおいて有用であることが証明されている。
既存のほとんどの研究は、深度測定がRGBピクセルと正確で整合していると仮定し、問題をモーダルな特徴融合としてモデル化している。
本稿では,RGB特徴量応答を効果的に再検討するだけでなく,複数の段階を通して正確な深度情報を抽出し,代わりに2つの補正表現を集約する,統一的で効率的なクロスモダリティガイドを提案する。
論文 参考訳(メタデータ) (2020-07-17T18:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。