論文の概要: An alternative to SVM Method for Data Classification
- arxiv url: http://arxiv.org/abs/2308.11579v1
- Date: Sun, 20 Aug 2023 14:09:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 17:19:31.703828
- Title: An alternative to SVM Method for Data Classification
- Title(参考訳): データ分類のためのSVM法に代わる方法
- Authors: Lakhdar Remaki
- Abstract要約: サポートベクトルマシン(SVM)は、データ分類のための一般的なカーネル手法である。
この方法は、時間処理、高次元ケースにおける最適化プロセスの失敗のリスクなど、いくつかの弱点に悩まされている。
本稿では, 上記の欠点を微妙に改善した, 類似性能の代替手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Support vector machine (SVM), is a popular kernel method for data
classification that demonstrated its efficiency for a large range of practical
applications. The method suffers, however, from some weaknesses including; time
processing, risk of failure of the optimization process for high dimension
cases, generalization to multi-classes, unbalanced classes, and dynamic
classification. In this paper an alternative method is proposed having a
similar performance, with a sensitive improvement of the aforementioned
shortcomings. The new method is based on a minimum distance to optimal
subspaces containing the mapped original classes.
- Abstract(参考訳): サポートベクトルマシン (SVM) は、データ分類のための一般的なカーネル手法であり、多種多様な実用用途でその効率を実証している。
しかし、この手法は、時間処理、高次元の場合の最適化プロセスの失敗のリスク、多クラスへの一般化、不均衡クラス、動的分類などの弱点に悩まされている。
本稿では,上記の欠点を敏感に改善しつつ,同様の性能を持つ代替手法を提案する。
新しい方法は、マップされた元のクラスを含む最適な部分空間への最小距離に基づいている。
関連論文リスト
- Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric [99.19559537966538]
DMLは、分類、クラスタリング、検索といった下流タスクのための識別可能な高次元埋め込み空間を学習することを目的としている。
埋め込み空間の構造を維持し,特徴の崩壊を避けるために,反崩壊損失と呼ばれる新しい損失関数を提案する。
ベンチマークデータセットの総合実験により,提案手法が既存の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-03T13:44:20Z) - Smooth Ranking SVM via Cutting-Plane Method [6.946903076677842]
我々は,AUCを最大化するために,Randing SVMと類似した切削平面法に依存するプロトタイプ学習手法を開発した。
本アルゴリズムは,切削面を反復的に導入することで,より単純なモデルを学ぶ。
73のバイナリ分類データセットを用いて行った実験から,本手法は競合する25のデータセットの中で最高のAUCが得られる。
論文 参考訳(メタデータ) (2024-01-25T18:47:23Z) - Multi-class Support Vector Machine with Maximizing Minimum Margin [67.51047882637688]
Support Vector Machine (SVM) は、パターン認識タスクに広く応用されている機械学習技術である。
本稿では,クラス損失のペア化と最小マージンの最大化を両立するマルチクラスSVMの新たな手法を提案する。
実験により,提案手法の有効性と優位性を示す。
論文 参考訳(メタデータ) (2023-12-11T18:09:55Z) - Efficient Training of One Class Classification-SVMs [0.0]
そこで本研究では,一級分類の実施に高効率なトレーニング手法を用いることを検討した。
本稿では,デュアルソフトマージンワンクラスSVM学習のための効果的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-28T15:35:16Z) - Majorization-Minimization for sparse SVMs [46.99165837639182]
サポートベクタマシン(SVM)は、数十年前に教師付きフレームワークの下でバイナリ分類タスクを実行するために導入された。
それらはしばしば他の教師付き手法よりも優れており、マシンラーニング分野において最も一般的なアプローチの1つである。
本研究では,スムーズなスパースプロモーティング型正方形ヒンジ損失最小化によるSVMのトレーニングについて検討する。
論文 参考訳(メタデータ) (2023-08-31T17:03:16Z) - Numerical Optimizations for Weighted Low-rank Estimation on Language
Model [73.12941276331316]
Singular value decomposition (SVD) は、より小さい行列でターゲット行列を近似する最も一般的な圧縮手法の1つである。
標準SVDは行列内のパラメータを同じ重要性で扱うが、これは単純だが非現実的な仮定である。
本手法は,ニューラルベース言語モデルにおいて,現在のSOTA法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-02T00:58:02Z) - Handling Imbalanced Classification Problems With Support Vector Machines
via Evolutionary Bilevel Optimization [73.17488635491262]
サポートベクトルマシン(SVM)は、バイナリ分類問題に対処する一般的な学習アルゴリズムである。
この記事では、EBCS-SVMについて紹介する。
論文 参考訳(メタデータ) (2022-04-21T16:08:44Z) - A fast learning algorithm for One-Class Slab Support Vector Machines [1.1613446814180841]
本稿では,SMO (Sequential Minimal Optimization) を用いた一級スラブSVMの高速トレーニング手法を提案する。
その結果、このトレーニング手法は、他の準計画法(QP)の解法よりも、大規模なトレーニングデータに対してより優れたスケールが可能であることが示唆された。
論文 参考訳(メタデータ) (2020-11-06T09:16:39Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
片側予測(OSP)に基づく緩和は、実際に関係する高目標精度体制において、ほぼ最適カバレッジが得られるSCスキームをもたらす。
理論的には,SCとOSPのバウンダリ一般化を導出し,その手法が小さな誤差レベルでのカバレッジにおいて,技術手法の状態を強く上回ることを示す。
論文 参考訳(メタデータ) (2020-10-15T16:14:27Z) - A novel embedded min-max approach for feature selection in nonlinear
support vector machine classification [0.0]
min-max最適化問題に基づく組込み特徴選択法を提案する。
双対性理論を活用することにより、min-max問題を等価に修正し、それ以上のアドを伴わずに解決する。
提案手法の効率性と有用性は,いくつかのベンチマークデータセットで検証される。
論文 参考訳(メタデータ) (2020-04-21T09:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。