論文の概要: Causal Intersectionality and Dual Form of Gradient Descent for Multimodal Analysis: a Case Study on Hateful Memes
- arxiv url: http://arxiv.org/abs/2308.11585v2
- Date: Sat, 23 Mar 2024 14:07:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 03:28:06.366932
- Title: Causal Intersectionality and Dual Form of Gradient Descent for Multimodal Analysis: a Case Study on Hateful Memes
- Title(参考訳): マルチモーダル分析における因果的断面積と2次元Descenceの二重形態--Hateful Memesを事例として
- Authors: Yosuke Miyanishi, Minh Le Nguyen,
- Abstract要約: モデル機構が証拠に基づく意思決定に因果的影響を明らかにする方法について検討する。
この研究は、因果性とXAIに関する対話をさらに進める。
- 参考スコア(独自算出の注目度): 0.9120312014267044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Amidst the rapid expansion of Machine Learning (ML) and Large Language Models (LLMs), understanding the semantics within their mechanisms is vital. Causal analyses define semantics, while gradient-based methods are essential to eXplainable AI (XAI), interpreting the model's 'black box'. Integrating these, we investigate how a model's mechanisms reveal its causal effect on evidence-based decision-making. Research indicates intersectionality - the combined impact of an individual's demographics - can be framed as an Average Treatment Effect (ATE). This paper demonstrates that hateful meme detection can be viewed as an ATE estimation using intersectionality principles, and summarized gradient-based attention scores highlight distinct behaviors of three Transformer models. We further reveal that LLM Llama-2 can discern the intersectional aspects of the detection through in-context learning and that the learning process could be explained via meta-gradient, a secondary form of gradient. In conclusion, this work furthers the dialogue on Causality and XAI. Our code is available online (see External Resources section).
- Abstract(参考訳): 機械学習(ML)と大規模言語モデル(LLM)の急速な拡張の中で、それらのメカニズム内の意味を理解することが不可欠である。
因果解析はセマンティクスを定義し、勾配に基づく手法はeXplainable AI(XAI)に必須であり、モデルの「ブラックボックス」を解釈する。
これらを統合することで,モデルのメカニズムが証拠に基づく意思決定に与える影響を明らかにする。
研究は、個人の人口動態の複合的な影響である交叉性は、平均的治療効果(ATE)として表わすことができることを示している。
本稿では, ハイトフルミーム検出を共通性原理を用いたATE推定とみなすことができ, 3つのトランスフォーマーモデルの異なる挙動を示す勾配に基づく注意スコアを要約した。
さらに、LLM Llama-2は、文脈内学習による検出の交叉面を識別でき、学習過程は、二次的な勾配であるメタグラディエントによって説明できることを明らかにした。
結論として、この研究は因果性とXAIに関する対話をさらに深めている。
私たちのコードはオンラインで利用可能です(外部リソースのセクションを参照)。
関連論文リスト
- Towards Context-Aware Emotion Recognition Debiasing from a Causal Demystification Perspective via De-confounded Training [14.450673163785094]
文脈認識感情認識(CAER)は、対象者の感情を認識するための貴重な意味的手がかりを提供する。
現在のアプローチは、コンテキストから知覚的に重要な表現を抽出する洗練された構造を設計することに集中している。
共同設立者を非難するためのCCIM(Contextual Causal Intervention Module)を提案する。
論文 参考訳(メタデータ) (2024-07-06T05:29:02Z) - CausalGym: Benchmarking causal interpretability methods on linguistic
tasks [52.61917615039112]
CausalGymを使って、モデル動作に因果的に影響を及ぼす解釈可能性手法のベンチマークを行う。
ピチアモデル (14M--6.9B) について検討し, 幅広い解釈可能性手法の因果効果について検討した。
DASは他の手法よりも優れており、2つの困難な言語現象の学習軌跡の研究に利用している。
論文 参考訳(メタデータ) (2024-02-19T21:35:56Z) - Separating common from salient patterns with Contrastive Representation
Learning [2.250968907999846]
コントラスト分析は、2つのデータセット間の変動の共通要因を分離することを目的としている。
変分オートエンコーダに基づく現在のモデルは意味表現の学習において性能が劣っている。
コントラスト分析に適合した意味表現表現を学習するためのコントラスト学習の活用を提案する。
論文 参考訳(メタデータ) (2024-02-19T08:17:13Z) - A Novel Energy based Model Mechanism for Multi-modal Aspect-Based
Sentiment Analysis [85.77557381023617]
マルチモーダル感情分析のための新しいフレームワークDQPSAを提案する。
PDQモジュールは、プロンプトをビジュアルクエリと言語クエリの両方として使用し、プロンプト対応の視覚情報を抽出する。
EPEモジュールはエネルギーベースモデルの観点から解析対象の境界ペアリングをモデル化する。
論文 参考訳(メタデータ) (2023-12-13T12:00:46Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
得られた知識を有向非巡回因果グラフの形で公開することを提案する。
また、この因果発見プロセスを状態依存的に設計し、潜在因果グラフのダイナミクスをモデル化する。
提案するフレームワークは,動的因果探索モジュール,因果符号化モジュール,予測モジュールの3つの部分から構成され,エンドツーエンドで訓練される。
論文 参考訳(メタデータ) (2023-09-30T20:59:42Z) - Unsupervised discovery of Interpretable Visual Concepts [0.0]
モデルの決定を説明する2つの方法を提案し,グローバルな解釈可能性を高める。
咬合・感性分析(因果性を含む)にインスパイアされた1つの方法
別の方法は、クラス認識順序相関 (Class-Aware Order correlation, CAOC) と呼ばれる新しいメトリクスを用いて、最も重要な画像領域を世界規模で評価する。
論文 参考訳(メタデータ) (2023-08-31T07:53:02Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - A Perspective on Explainable Artificial Intelligence Methods: SHAP and LIME [4.328967621024592]
本稿では2つの広く使われているXAI手法の解釈のための枠組みを提案する。
モデル依存性やコリナリティの有無の観点から,これらの結果について議論する。
以上の結果から,SHAPとLIMEはMLモデルや特徴コリナリティーの影響を強く受けており,その使用法や解釈に注意を喚起している。
論文 参考訳(メタデータ) (2023-05-03T10:04:46Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
モデルに依存しないメタラーニング(MAML)は、今日では最も人気があり広く採用されているメタラーニングアルゴリズムの1つである。
我々は、MAMLの動作メカニズムに対する新たな視点を提供し、以下に示すように、MAMLは、教師付きコントラスト目的関数を用いたメタラーナーに類似している。
このような干渉を軽減するため, 単純だが効果的な手法であるゼロ化手法を提案する。
論文 参考訳(メタデータ) (2021-06-29T12:52:26Z) - Transforming Feature Space to Interpret Machine Learning Models [91.62936410696409]
この貢献は、特徴空間変換のレンズを通して機械学習モデルを解釈する新しいアプローチを提案する。
非条件的および条件付きポストホック診断ツールの拡張に使用できる。
提案手法の可能性を実証するために,46特徴のリモートセンシング土地被覆分類の事例研究を行った。
論文 参考訳(メタデータ) (2021-04-09T10:48:11Z) - The Grammar of Interactive Explanatory Model Analysis [7.812073412066698]
本稿では,異なる説明モデル解析(EMA)手法が相互にどのように補完するかを示す。
我々はIEMAの文法を形式化し、潜在的な人間モデル対話を記述する。
IEMAは、広く使われている人中心のオープンソースソフトウェアフレームワークで実装されている。
論文 参考訳(メタデータ) (2020-05-01T17:12:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。