Identifying depression-related topics in smartphone-collected
free-response speech recordings using an automatic speech recognition system
and a deep learning topic model
- URL: http://arxiv.org/abs/2308.11773v2
- Date: Tue, 5 Sep 2023 11:59:25 GMT
- Title: Identifying depression-related topics in smartphone-collected
free-response speech recordings using an automatic speech recognition system
and a deep learning topic model
- Authors: Yuezhou Zhang, Amos A Folarin, Judith Dineley, Pauline Conde, Valeria
de Angel, Shaoxiong Sun, Yatharth Ranjan, Zulqarnain Rashid, Callum Stewart,
Petroula Laiou, Heet Sankesara, Linglong Qian, Faith Matcham, Katie M White,
Carolin Oetzmann, Femke Lamers, Sara Siddi, Sara Simblett, Bj\"orn W.
Schuller, Srinivasan Vairavan, Til Wykes, Josep Maria Haro, Brenda WJH
Penninx, Vaibhav A Narayan, Matthew Hotopf, Richard JB Dobson, Nicholas
Cummins, RADAR-CNS consortium
- Abstract summary: We identified 29 topics in 3919 smartphone-collected speech recordings from 265 participants.
Six topics with a median PHQ-8 greater than or equal to 10 were regarded as risk topics for depression.
The correlation between topic shifts and changes in depression severity over time was also investigated.
- Score: 7.825530847570242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language use has been shown to correlate with depression, but large-scale
validation is needed. Traditional methods like clinic studies are expensive.
So, natural language processing has been employed on social media to predict
depression, but limitations remain-lack of validated labels, biased user
samples, and no context. Our study identified 29 topics in 3919
smartphone-collected speech recordings from 265 participants using the Whisper
tool and BERTopic model. Six topics with a median PHQ-8 greater than or equal
to 10 were regarded as risk topics for depression: No Expectations, Sleep,
Mental Therapy, Haircut, Studying, and Coursework. To elucidate the topic
emergence and associations with depression, we compared behavioral (from
wearables) and linguistic characteristics across identified topics. The
correlation between topic shifts and changes in depression severity over time
was also investigated, indicating the importance of longitudinally monitoring
language use. We also tested the BERTopic model on a similar smaller dataset
(356 speech recordings from 57 participants), obtaining some consistent
results. In summary, our findings demonstrate specific speech topics may
indicate depression severity. The presented data-driven workflow provides a
practical approach to collecting and analyzing large-scale speech data from
real-world settings for digital health research.
Related papers
- Language-Agnostic Analysis of Speech Depression Detection [2.5764071253486636]
This work analyzes automatic speech-based depression detection across two languages, English and Malayalam.
A CNN model is trained to identify acoustic features associated with depression in speech, focusing on both languages.
Our findings and collected data could contribute to the development of language-agnostic speech-based depression detection systems.
arXiv Detail & Related papers (2024-09-23T07:35:56Z) - Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
This study introduces Spoken Stereoset, a dataset specifically designed to evaluate social biases in Speech Large Language Models (SLLMs)
By examining how different models respond to speech from diverse demographic groups, we aim to identify these biases.
The findings indicate that while most models show minimal bias, some still exhibit slightly stereotypical or anti-stereotypical tendencies.
arXiv Detail & Related papers (2024-08-14T16:55:06Z) - DAIC-WOZ: On the Validity of Using the Therapist's prompts in Automatic Depression Detection from Clinical Interviews [39.08557916089242]
Recent studies have reported enhanced performance when incorporating interviewer's prompts into the model.
We discover that models using interviewer's prompts learn to focus on a specific region of the interviews, where questions about past experiences with mental health issues are asked.
We achieve a 0.90 F1 score by intentionally exploiting it, the highest result reported to date on this dataset using only textual information.
arXiv Detail & Related papers (2024-04-22T09:07:50Z) - Hierarchical attention interpretation: an interpretable speech-level
transformer for bi-modal depression detection [6.561362931802501]
Depression is a common mental disorder. Automatic depression detection tools using speech, enabled by machine learning, help early screening of depression.
This paper addresses two limitations that may hinder the clinical implementations of such tools: noise resulting from segment-level labelling and a lack of model interpretability.
arXiv Detail & Related papers (2023-09-23T20:48:58Z) - The Relationship Between Speech Features Changes When You Get Depressed:
Feature Correlations for Improving Speed and Performance of Depression
Detection [69.88072583383085]
This work shows that depression changes the correlation between features extracted from speech.
Using such an insight can improve the training speed and performance of depression detectors based on SVMs and LSTMs.
arXiv Detail & Related papers (2023-07-06T09:54:35Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
We propose a deep architecture for depression detection from social media posts.
We incorporate profanity and morality features of posts and words in our architecture using a late fusion scheme.
The inclusion of the proposed features yields state-of-the-art results in both settings.
arXiv Detail & Related papers (2023-03-24T21:26:27Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings.
We use test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels.
We evaluate our methods on two Reddit-based benchmarks, achieving 30% improvement over state of the art in terms of measuring depression severity.
arXiv Detail & Related papers (2022-11-14T18:47:26Z) - Perception Point: Identifying Critical Learning Periods in Speech for
Bilingual Networks [58.24134321728942]
We compare and identify cognitive aspects on deep neural-based visual lip-reading models.
We observe a strong correlation between these theories in cognitive psychology and our unique modeling.
arXiv Detail & Related papers (2021-10-13T05:30:50Z) - A Psychologically Informed Part-of-Speech Analysis of Depression in
Social Media [1.7188280334580193]
We use the depression dataset from the Early Risk Prediction on the Internet Workshop (eRisk) 2018.
Our results reveal statistically significant differences between the depressed and non-depressed individuals.
Our work provides insights regarding the way in which depressed individuals are expressing themselves on social media platforms.
arXiv Detail & Related papers (2021-07-31T16:23:22Z) - "Notic My Speech" -- Blending Speech Patterns With Multimedia [65.91370924641862]
We propose a view-temporal attention mechanism to model both the view dependence and the visemic importance in speech recognition and understanding.
Our proposed method outperformed the existing work by 4.99% in terms of the viseme error rate.
We show that there is a strong correlation between our model's understanding of multi-view speech and the human perception.
arXiv Detail & Related papers (2020-06-12T06:51:55Z) - Affective Conditioning on Hierarchical Networks applied to Depression
Detection from Transcribed Clinical Interviews [0.0]
Depression is a mental disorder that impacts not only the subject's mood but also the use of language.
We use a Hierarchical Attention Network to classify interviews of depressed subjects.
We augment the attention layer of our model with a conditioning mechanism on linguistic features, extracted from affective lexica.
arXiv Detail & Related papers (2020-06-04T20:55:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.