Scaling up the think-aloud method
- URL: http://arxiv.org/abs/2505.23931v1
- Date: Thu, 29 May 2025 18:26:23 GMT
- Title: Scaling up the think-aloud method
- Authors: Daniel Wurgaft, Ben Prystawski, Kanishk Gandhi, Cedegao E. Zhang, Joshua B. Tenenbaum, Noah D. Goodman,
- Abstract summary: We develop methods to automate the transcription and annotation of verbal reports of reasoning using natural language processing tools.<n>In our study, 640 participants thought aloud while playing the Game of 24, a mathematical reasoning task.<n>Our work demonstrates the value of think-aloud data at scale and serves as a proof of concept for the automated analysis of verbal reports.
- Score: 63.91056664423141
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The think-aloud method, where participants voice their thoughts as they solve a task, is a valuable source of rich data about human reasoning processes. Yet, it has declined in popularity in contemporary cognitive science, largely because labor-intensive transcription and annotation preclude large sample sizes. Here, we develop methods to automate the transcription and annotation of verbal reports of reasoning using natural language processing tools, allowing for large-scale analysis of think-aloud data. In our study, 640 participants thought aloud while playing the Game of 24, a mathematical reasoning task. We automatically transcribed the recordings and coded the transcripts as search graphs, finding moderate inter-rater reliability with humans. We analyze these graphs and characterize consistency and variation in human reasoning traces. Our work demonstrates the value of think-aloud data at scale and serves as a proof of concept for the automated analysis of verbal reports.
Related papers
- SpeechR: A Benchmark for Speech Reasoning in Large Audio-Language Models [60.72029578488467]
SpeechR is a unified benchmark for evaluating reasoning over speech in large audio-language models.<n>It evaluates models along three key dimensions: factual retrieval, procedural inference, and normative judgment.<n> Evaluations on eleven state-of-the-art LALMs reveal that high transcription accuracy does not translate into strong reasoning capabilities.
arXiv Detail & Related papers (2025-08-04T03:28:04Z) - Enabling automatic transcription of child-centered audio recordings from real-world environments [10.369750912567714]
We present an approach to automatically detect those utterances in longform audio that can be reliably transcribed with modern ASR systems.<n>We show that it achieves a median word error rate (WER) of 0% and a mean WER of 18% when transcribing 13% of the total speech in the dataset.
arXiv Detail & Related papers (2025-06-13T13:00:57Z) - Acoustic and linguistic representations for speech continuous emotion
recognition in call center conversations [2.0653090022137697]
We explore the use of pre-trained speech representations as a form of transfer learning towards AlloSat corpus.
Our experiments confirm the large gain in performance obtained with the use of pre-trained features.
Surprisingly, we found that the linguistic content is clearly the major contributor for the prediction of satisfaction.
arXiv Detail & Related papers (2023-10-06T10:22:51Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
The massive collection of user posts across social media platforms is primarily untapped for artificial intelligence (AI) use cases.
Natural language processing (NLP) is a subfield of AI that leverages bodies of documents, known as corpora, to train computers in human-like language understanding.
This study demonstrates that the applied results of unsupervised analysis allow a computer to predict either negative, positive, or neutral user sentiment towards plastic surgery.
arXiv Detail & Related papers (2023-07-05T20:16:20Z) - Using Natural Language Explanations to Rescale Human Judgments [81.66697572357477]
We propose a method to rescale ordinal annotations and explanations using large language models (LLMs)
We feed annotators' Likert ratings and corresponding explanations into an LLM and prompt it to produce a numeric score anchored in a scoring rubric.
Our method rescales the raw judgments without impacting agreement and brings the scores closer to human judgments grounded in the same scoring rubric.
arXiv Detail & Related papers (2023-05-24T06:19:14Z) - Saliency Map Verbalization: Comparing Feature Importance Representations
from Model-free and Instruction-based Methods [6.018950511093273]
Saliency maps can explain a neural model's predictions by identifying important input features.
We formalize the underexplored task of translating saliency maps into natural language.
We compare two novel methods (search-based and instruction-based verbalizations) against conventional feature importance representations.
arXiv Detail & Related papers (2022-10-13T17:48:15Z) - Decoding speech perception from non-invasive brain recordings [48.46819575538446]
We introduce a model trained with contrastive-learning to decode self-supervised representations of perceived speech from non-invasive recordings.
Our model can identify, from 3 seconds of MEG signals, the corresponding speech segment with up to 41% accuracy out of more than 1,000 distinct possibilities.
arXiv Detail & Related papers (2022-08-25T10:01:43Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
Self-supervised representation learning methods promise a single universal model that would benefit a wide variety of tasks and domains.
Speech representation learning is experiencing similar progress in three main categories: generative, contrastive, and predictive methods.
This review presents approaches for self-supervised speech representation learning and their connection to other research areas.
arXiv Detail & Related papers (2022-05-21T16:52:57Z) - Improving speaker de-identification with functional data analysis of f0
trajectories [10.809893662563926]
Formant modification is a simpler, yet effective method for speaker de-identification which requires no training data.
This study introduces a novel speaker de-identification method, which, in addition to simple formant shifts, manipulates f0 trajectories based on functional data analysis.
The proposed speaker de-identification method will conceal plausibly identifying pitch characteristics in a phonetically controllable manner and improve formant-based speaker de-identification up to 25%.
arXiv Detail & Related papers (2022-03-31T01:34:15Z) - A combined approach to the analysis of speech conversations in a contact
center domain [2.575030923243061]
We describe an experimentation with a speech analytics process for an Italian contact center, that deals with call recordings extracted from inbound or outbound flows.
First, we illustrate in detail the development of an in-house speech-to-text solution, based on Kaldi framework.
Then, we evaluate and compare different approaches to the semantic tagging of call transcripts.
Finally, a decision tree inducer, called J48S, is applied to the problem of tagging.
arXiv Detail & Related papers (2022-03-12T10:03:20Z) - Leveraging Pre-trained Language Model for Speech Sentiment Analysis [58.78839114092951]
We explore the use of pre-trained language models to learn sentiment information of written texts for speech sentiment analysis.
We propose a pseudo label-based semi-supervised training strategy using a language model on an end-to-end speech sentiment approach.
arXiv Detail & Related papers (2021-06-11T20:15:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.