Adversarial Training Using Feedback Loops
- URL: http://arxiv.org/abs/2308.11881v2
- Date: Thu, 24 Aug 2023 03:16:55 GMT
- Title: Adversarial Training Using Feedback Loops
- Authors: Ali Haisam Muhammad Rafid, Adrian Sandu
- Abstract summary: Deep neural networks (DNNs) are highly susceptible to adversarial attacks due to limited generalizability.
This paper proposes a new robustification approach based on control theory.
The novel adversarial training approach based on the feedback control architecture is called Feedback Looped Adversarial Training (FLAT)
- Score: 1.6114012813668932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNN) have found wide applicability in numerous fields
due to their ability to accurately learn very complex input-output relations.
Despite their accuracy and extensive use, DNNs are highly susceptible to
adversarial attacks due to limited generalizability. For future progress in the
field, it is essential to build DNNs that are robust to any kind of
perturbations to the data points. In the past, many techniques have been
proposed to robustify DNNs using first-order derivative information of the
network.
This paper proposes a new robustification approach based on control theory. A
neural network architecture that incorporates feedback control, named Feedback
Neural Networks, is proposed. The controller is itself a neural network, which
is trained using regular and adversarial data such as to stabilize the system
outputs. The novel adversarial training approach based on the feedback control
architecture is called Feedback Looped Adversarial Training (FLAT). Numerical
results on standard test problems empirically show that our FLAT method is more
effective than the state-of-the-art to guard against adversarial attacks.
Related papers
- Set-Based Training for Neural Network Verification [8.97708612393722]
Small input perturbations can significantly affect the outputs of a neural network.
In safety-critical environments, the inputs often contain noisy sensor data.
We employ an end-to-end set-based training procedure that trains robust neural networks for formal verification.
arXiv Detail & Related papers (2024-01-26T15:52:41Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
Quantized neural networks (QNNs) have been developed, with binarized neural networks (BNNs) restricted to binary values as a special case.
This paper presents an automata-theoretic approach to synthesizing BNNs that meet designated properties.
arXiv Detail & Related papers (2023-07-29T06:27:28Z) - Adversarial training with informed data selection [53.19381941131439]
Adrial training is the most efficient solution to defend the network against these malicious attacks.
This work proposes a data selection strategy to be applied in the mini-batch training.
The simulation results show that a good compromise can be obtained regarding robustness and standard accuracy.
arXiv Detail & Related papers (2023-01-07T12:09:50Z) - Deep Binary Reinforcement Learning for Scalable Verification [44.44006029119672]
We present an RL algorithm tailored specifically for binarized neural networks (BNNs)
After training BNNs for the Atari environments, we verify robustness properties.
arXiv Detail & Related papers (2022-03-11T01:20:23Z) - FitAct: Error Resilient Deep Neural Networks via Fine-Grained
Post-Trainable Activation Functions [0.05249805590164901]
Deep neural networks (DNNs) are increasingly being deployed in safety-critical systems such as personal healthcare devices and self-driving cars.
In this paper, we propose FitAct, a low-cost approach to enhance the error resilience of DNNs by deploying fine-grained post-trainable activation functions.
arXiv Detail & Related papers (2021-12-27T07:07:50Z) - Neural Architecture Dilation for Adversarial Robustness [56.18555072877193]
A shortcoming of convolutional neural networks is that they are vulnerable to adversarial attacks.
This paper aims to improve the adversarial robustness of the backbone CNNs that have a satisfactory accuracy.
Under a minimal computational overhead, a dilation architecture is expected to be friendly with the standard performance of the backbone CNN.
arXiv Detail & Related papers (2021-08-16T03:58:00Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.