HashReID: Dynamic Network with Binary Codes for Efficient Person
Re-identification
- URL: http://arxiv.org/abs/2308.11900v1
- Date: Wed, 23 Aug 2023 04:01:54 GMT
- Title: HashReID: Dynamic Network with Binary Codes for Efficient Person
Re-identification
- Authors: Kshitij Nikhal, Yujunrong Ma, Shuvra S. Bhattacharyya, Benjamin S.
Riggan
- Abstract summary: Biometric applications, such as person re-identification (ReID), are often deployed on energy constrained devices.
While recent ReID methods prioritize high retrieval performance, they often come with large computational costs and high search time.
We propose an input-adaptive network with multiple exit blocks, that can terminate early if the retrieval is straightforward or noisy.
- Score: 3.3372444460738357
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Biometric applications, such as person re-identification (ReID), are often
deployed on energy constrained devices. While recent ReID methods prioritize
high retrieval performance, they often come with large computational costs and
high search time, rendering them less practical in real-world settings. In this
work, we propose an input-adaptive network with multiple exit blocks, that can
terminate computation early if the retrieval is straightforward or noisy,
saving a lot of computation. To assess the complexity of the input, we
introduce a temporal-based classifier driven by a new training strategy.
Furthermore, we adopt a binary hash code generation approach instead of relying
on continuous-valued features, which significantly improves the search process
by a factor of 20. To ensure similarity preservation, we utilize a new ranking
regularizer that bridges the gap between continuous and binary features.
Extensive analysis of our proposed method is conducted on three datasets:
Market1501, MSMT17 (Multi-Scene Multi-Time), and the BGC1 (BRIAR Government
Collection). Using our approach, more than 70% of the samples with compact hash
codes exit early on the Market1501 dataset, saving 80% of the networks
computational cost and improving over other hash-based methods by 60%. These
results demonstrate a significant improvement over dynamic networks and
showcase comparable accuracy performance to conventional ReID methods. Code
will be made available.
Related papers
- RREH: Reconstruction Relations Embedded Hashing for Semi-Paired Cross-Modal Retrieval [32.06421737874828]
Reconstruction Relations Embedded Hashing (RREH) is designed for semi-paired cross-modal retrieval tasks.
RREH assumes that multi-modal data share a common subspace.
anchors are sampled from paired data, which improves the efficiency of hash learning.
arXiv Detail & Related papers (2024-05-28T03:12:54Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Deep Lifelong Cross-modal Hashing [17.278818467305683]
We propose a novel deep lifelong cross-modal hashing to achieve lifelong hashing retrieval instead of re-training hash function repeatedly.
Specifically, we design lifelong learning strategy to update hash functions by directly training the incremental data instead of retraining new hash functions using all the accumulated data.
It yields substantial average over 20% in retrieval accuracy and almost reduces over 80% training time when new data arrives continuously.
arXiv Detail & Related papers (2023-04-26T07:56:22Z) - Fast Online Hashing with Multi-Label Projection [15.85793225585693]
We propose a novel Fast Online Hashing (FOH) method which only updates the binary codes of a small part of the database.
The experimental results show that the proposed FOH can achieve dramatic superiority on query time up to 6.28 seconds less than state-of-the-art baselines.
arXiv Detail & Related papers (2022-12-03T03:19:28Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z) - Efficient Cross-Modal Retrieval via Deep Binary Hashing and Quantization [5.799838997511804]
Cross-modal retrieval aims to search for data with similar semantic meanings across different content modalities.
We propose a jointly learned deep hashing and quantization network (HQ) for cross-modal retrieval.
Experimental results on the NUS-WIDE, MIR-Flickr, and Amazon datasets demonstrate that HQ achieves boosts of more than 7% in precision.
arXiv Detail & Related papers (2022-02-15T22:00:04Z) - Building an Efficient and Effective Retrieval-based Dialogue System via
Mutual Learning [27.04857039060308]
We propose to combine the best of both worlds to build a retrieval system.
We employ a fast bi-encoder to replace the traditional feature-based pre-retrieval model.
We train the pre-retrieval model and the re-ranking model at the same time via mutual learning.
arXiv Detail & Related papers (2021-10-01T01:32:33Z) - Retrieve Fast, Rerank Smart: Cooperative and Joint Approaches for
Improved Cross-Modal Retrieval [80.35589927511667]
Current state-of-the-art approaches to cross-modal retrieval process text and visual input jointly, relying on Transformer-based architectures with cross-attention mechanisms that attend over all words and objects in an image.
We propose a novel fine-tuning framework which turns any pretrained text-image multi-modal model into an efficient retrieval model.
Our experiments on a series of standard cross-modal retrieval benchmarks in monolingual, multilingual, and zero-shot setups, demonstrate improved accuracy and huge efficiency benefits over the state-of-the-art cross-encoders.
arXiv Detail & Related papers (2021-03-22T15:08:06Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
One-step methods have been developed to handle pedestrian detection and identification sub-tasks using a single network.
There are two major challenges in the current one-step approaches.
We propose a decoupled and memory-reinforced network (DMRNet) to overcome these problems.
arXiv Detail & Related papers (2021-02-22T06:19:45Z) - Learning to Hash with Graph Neural Networks for Recommender Systems [103.82479899868191]
Graph representation learning has attracted much attention in supporting high quality candidate search at scale.
Despite its effectiveness in learning embedding vectors for objects in the user-item interaction network, the computational costs to infer users' preferences in continuous embedding space are tremendous.
We propose a simple yet effective discrete representation learning framework to jointly learn continuous and discrete codes.
arXiv Detail & Related papers (2020-03-04T06:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.