Deep Lifelong Cross-modal Hashing
- URL: http://arxiv.org/abs/2304.13357v1
- Date: Wed, 26 Apr 2023 07:56:22 GMT
- Title: Deep Lifelong Cross-modal Hashing
- Authors: Liming Xu, Hanqi Li, Bochuan Zheng, Weisheng Li, Jiancheng Lv
- Abstract summary: We propose a novel deep lifelong cross-modal hashing to achieve lifelong hashing retrieval instead of re-training hash function repeatedly.
Specifically, we design lifelong learning strategy to update hash functions by directly training the incremental data instead of retraining new hash functions using all the accumulated data.
It yields substantial average over 20% in retrieval accuracy and almost reduces over 80% training time when new data arrives continuously.
- Score: 17.278818467305683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hashing methods have made significant progress in cross-modal retrieval tasks
with fast query speed and low storage cost. Among them, deep learning-based
hashing achieves better performance on large-scale data due to its excellent
extraction and representation ability for nonlinear heterogeneous features.
However, there are still two main challenges in catastrophic forgetting when
data with new categories arrive continuously, and time-consuming for
non-continuous hashing retrieval to retrain for updating. To this end, we, in
this paper, propose a novel deep lifelong cross-modal hashing to achieve
lifelong hashing retrieval instead of re-training hash function repeatedly when
new data arrive. Specifically, we design lifelong learning strategy to update
hash functions by directly training the incremental data instead of retraining
new hash functions using all the accumulated data, which significantly reduce
training time. Then, we propose lifelong hashing loss to enable original hash
codes participate in lifelong learning but remain invariant, and further
preserve the similarity and dis-similarity among original and incremental hash
codes to maintain performance. Additionally, considering distribution
heterogeneity when new data arriving continuously, we introduce multi-label
semantic similarity to supervise hash learning, and it has been proven that the
similarity improves performance with detailed analysis. Experimental results on
benchmark datasets show that the proposed methods achieves comparative
performance comparing with recent state-of-the-art cross-modal hashing methods,
and it yields substantial average increments over 20\% in retrieval accuracy
and almost reduces over 80\% training time when new data arrives continuously.
Related papers
- HashReID: Dynamic Network with Binary Codes for Efficient Person
Re-identification [3.3372444460738357]
Biometric applications, such as person re-identification (ReID), are often deployed on energy constrained devices.
While recent ReID methods prioritize high retrieval performance, they often come with large computational costs and high search time.
We propose an input-adaptive network with multiple exit blocks, that can terminate early if the retrieval is straightforward or noisy.
arXiv Detail & Related papers (2023-08-23T04:01:54Z) - Fast Online Hashing with Multi-Label Projection [15.85793225585693]
We propose a novel Fast Online Hashing (FOH) method which only updates the binary codes of a small part of the database.
The experimental results show that the proposed FOH can achieve dramatic superiority on query time up to 6.28 seconds less than state-of-the-art baselines.
arXiv Detail & Related papers (2022-12-03T03:19:28Z) - Learning to Hash Naturally Sorts [84.90210592082829]
We introduce Naturally-Sorted Hashing (NSH) to train a deep hashing model with sorted results end-to-end.
NSH sort the Hamming distances of samples' hash codes and accordingly gather their latent representations for self-supervised training.
We describe a novel Sorted Noise-Contrastive Estimation (SortedNCE) loss that selectively picks positive and negative samples for contrastive learning.
arXiv Detail & Related papers (2022-01-31T16:19:02Z) - Fast Class-wise Updating for Online Hashing [196.14748396106955]
This paper presents a novel supervised online hashing scheme, termed Fast Class-wise Updating for Online Hashing (FCOH)
A class-wise updating method is developed to decompose the binary code learning and alternatively renew the hash functions in a class-wise fashion, which well addresses the burden on large amounts of training batches.
To further achieve online efficiency, we propose a semi-relaxation optimization, which accelerates the online training by treating different binary constraints independently.
arXiv Detail & Related papers (2020-12-01T07:41:54Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
We propose a new method named textbfComprehensive stextbfImilarity textbfMining and ctextbfOnsistency leartextbfNing (CIMON)
First, we use global refinement and similarity statistical distribution to obtain reliable and smooth guidance. Second, both semantic and contrastive consistency learning are introduced to derive both disturb-invariant and discriminative hash codes.
arXiv Detail & Related papers (2020-10-15T14:47:14Z) - Making Online Sketching Hashing Even Faster [63.16042585506435]
We present a FasteR Online Sketching Hashing (FROSH) algorithm to sketch the data in a more compact form via an independent transformation.
We provide theoretical justification to guarantee that our proposed FROSH consumes less time and achieves a comparable sketching precision.
We also extend FROSH to its distributed implementation, namely DFROSH, to further reduce the training time cost of FROSH.
arXiv Detail & Related papers (2020-10-10T08:50:53Z) - Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator [62.26981903551382]
Variational auto-encoders (VAEs) with binary latent variables provide state-of-the-art performance in terms of precision for document retrieval.
We propose a pairwise loss function with discrete latent VAE to reward within-class similarity and between-class dissimilarity for supervised hashing.
This new semantic hashing framework achieves superior performance compared to the state-of-the-arts.
arXiv Detail & Related papers (2020-05-21T06:11:33Z) - Reinforcing Short-Length Hashing [61.75883795807109]
Existing methods have poor performance in retrieval using an extremely short-length hash code.
In this study, we propose a novel reinforcing short-length hashing (RSLH)
In this proposed RSLH, mutual reconstruction between the hash representation and semantic labels is performed to preserve the semantic information.
Experiments on three large-scale image benchmarks demonstrate the superior performance of RSLH under various short-length hashing scenarios.
arXiv Detail & Related papers (2020-04-24T02:23:52Z) - A Novel Incremental Cross-Modal Hashing Approach [21.99741793652628]
We propose a novel incremental cross-modal hashing algorithm termed "iCMH"
The proposed approach consists of two sequential stages, namely, learning the hash codes and training the hash functions.
Experiments across a variety of cross-modal datasets and comparisons with state-of-the-art cross-modal algorithms shows the usefulness of our approach.
arXiv Detail & Related papers (2020-02-03T12:34:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.