Detecting Strain Effects due to Nanobubbles in Graphene Mach-Zehnder
Interferometers
- URL: http://arxiv.org/abs/2308.11954v1
- Date: Wed, 23 Aug 2023 06:52:07 GMT
- Title: Detecting Strain Effects due to Nanobubbles in Graphene Mach-Zehnder
Interferometers
- Authors: Nojoon Myoung, Taegeun Song, Hee Chul Park
- Abstract summary: We investigate the effect of elastic strain on a Mach-Zehnder interferometer created by graphene p-n junction in quantum Hall regime.
A nanobubble causes detuning of conductance oscillations due to the strain-induced pseudo-magnetic fields.
Our findings suggest the potential of using graphene as a strain sensor for developments in graphene-based device fabrications and measurements technologies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the effect of elastic strain on a Mach-Zehnder (MZ)
interferometer created by graphene p-n junction in quantum Hall regime. We
demonstrate that a Gaussian-shaped nanobubble causes detuning of the quantum
Hall conductance oscillations across the p-n junction, due to the
strain-induced local pseudo-magnetic fields. By performing a
machine-learning-based Fourier analysis, we differentiate the
nanobubble-induced Fourier component from the conductance oscillations
originating from the external magnetic fields. We show that the detuning of the
conductance oscillations is due to the altered pathway of quantum Hall
interface channels caused by the strain-induced pseudo-magnetic fields. In the
presence of the nanobubble, a new Fourier component for a magnetic flux
$\Phi_{0}/2$ appears, and the corresponding MZ interferometry indicates that
the enclosed area is reduced by half due to the strain-mediated pathway between
two quantum Hall interface channels. Our findings suggest the potential of
using graphene as a strain sensor for developments in graphene-based device
fabrications and measurements technologies.
Related papers
- Magnetic field dependence of $V_B^-$ Defects in hexagonal boron nitride [5.426508182505848]
We study the influence of off-axis magnetic fields on the coherence properties of $V_B-$ defects in hBN.
Results are crucial for optimizing $V_B-$ defects in hBN, establishing their significance as robust quantum sensors.
arXiv Detail & Related papers (2024-10-09T10:40:05Z) - Magnetoresistance oscillations induced by geometry in a two-dimensional quantum ring [0.0]
We consider a GaAs device having an average radius of $800hspace0.05cmtextnm$ in different regimes of subband occupation at non-zero temperature.
We explore how the modified surface affects the Van-Hoove conductance singularities and the magnetoresistance interference patterns resulting from the Aharonov-Bohm oscillations of different frequencies.
arXiv Detail & Related papers (2024-06-21T13:54:40Z) - Dephasing due to electromagnetic interactions in spatial qubits [0.0]
Noise analysis in frequency-space focusing on electromagnetic sources of dephasing.
We will apply the obtained formulae to situations with two adjacent micro-particles.
arXiv Detail & Related papers (2023-12-09T03:47:35Z) - Study on the effects of anisotropic effective mass on electronic
properties, magnetization and persistent current in semiconductor quantum
ring with conical geometry [2.3353925077667923]
We study a 2D mesoscopic ring with an anisotropic effective mass considering surface quantum confinement effects.
We demonstrate through numerical analysis that the electronic properties, the magnetization, and the persistent current undergo significant changes due to quantum confinement and non-isotropic mass.
arXiv Detail & Related papers (2023-11-16T12:40:08Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - On the Su-Schrieffer-Heeger model of electron transport: low-temperature
optical conductivity by the Mellin transform [62.997667081978825]
We describe the low-temperature optical conductivity as a function of frequency for a quantum-mechanical system of electrons that hop along a polymer chain.
Our goal is to show vias how the interband conductivity of this system behaves as the smallest energy bandgap tends to close.
arXiv Detail & Related papers (2022-09-26T23:17:39Z) - A strain-engineered graphene qubit in a nanobubble [0.0]
We propose a controllable qubit in a graphene nanobubble with emergent two-level systems induced by pseudo-magnetic fields.
We found that double quantum dots can be created by the strain-induced pseudo-magnetic fields of a nanobubble, and that their quantum states can be manipulated by either local gate potentials or the pseudo-magnetic fields.
arXiv Detail & Related papers (2021-11-24T03:29:24Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Mechanical Decoupling of Quantum Emitters in Hexagonal Boron Nitride
from Low-Energy Phonon Modes [52.77024349608834]
Quantum emitters in hexagonal Boron Nitride (hBN) were recently reported to hol a homogeneous linewidth according to the Fourier-Transform limit up to room temperature.
This unusual observation was traced back to decoupling from in-plane phonon modes which can arise if the emitter is located between two planes of the hBN host material.
arXiv Detail & Related papers (2020-04-22T20:00:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.