StofNet: Super-resolution Time of Flight Network
- URL: http://arxiv.org/abs/2308.12009v2
- Date: Sat, 23 Dec 2023 06:17:22 GMT
- Title: StofNet: Super-resolution Time of Flight Network
- Authors: Christopher Hahne, Michel Hayoz, Raphael Sznitman
- Abstract summary: Time of Flight (ToF) is a prevalent depth sensing technology in the fields of robotics, medical imaging, and non-destructive testing.
This paper highlights the potential of modern super-resolution techniques to learn varying surroundings for a reliable and accurate ToF detection.
- Score: 8.395656453902685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time of Flight (ToF) is a prevalent depth sensing technology in the fields of
robotics, medical imaging, and non-destructive testing. Yet, ToF sensing faces
challenges from complex ambient conditions making an inverse modelling from the
sparse temporal information intractable. This paper highlights the potential of
modern super-resolution techniques to learn varying surroundings for a reliable
and accurate ToF detection. Unlike existing models, we tailor an architecture
for sub-sample precise semi-global signal localization by combining
super-resolution with an efficient residual contraction block to balance
between fine signal details and large scale contextual information. We
consolidate research on ToF by conducting a benchmark comparison against six
state-of-the-art methods for which we employ two publicly available datasets.
This includes the release of our SToF-Chirp dataset captured by an airborne
ultrasound transducer. Results showcase the superior performance of our
proposed StofNet in terms of precision, reliability and model complexity. Our
code is available at https://github.com/hahnec/stofnet.
Related papers
- Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks [0.0]
Deepfake detection aims to contrast the spread of deep-generated media that undermines trust in online content.
We introduce a novel deepfake detection approach on images using Binary Neural Networks (BNNs) for fast inference with minimal accuracy loss.
arXiv Detail & Related papers (2024-06-07T13:37:36Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Joint Attention-Guided Feature Fusion Network for Saliency Detection of
Surface Defects [69.39099029406248]
We propose a joint attention-guided feature fusion network (JAFFNet) for saliency detection of surface defects based on the encoder-decoder network.
JAFFNet mainly incorporates a joint attention-guided feature fusion (JAFF) module into decoding stages to adaptively fuse low-level and high-level features.
Experiments conducted on SD-saliency-900, Magnetic tile, and DAGM 2007 indicate that our method achieves promising performance in comparison with other state-of-the-art methods.
arXiv Detail & Related papers (2024-02-05T08:10:16Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
We develop a Global Context Aggregation Network (GCANet) for lightweight saliency detection of surface defects on the encoder-decoder structure.
First, we introduce a novel transformer encoder on the top layer of the lightweight backbone, which captures global context information through a novel Depth-wise Self-Attention (DSA) module.
The experimental results on three public defect datasets demonstrate that the proposed network achieves a better trade-off between accuracy and running efficiency compared with other 17 state-of-the-art methods.
arXiv Detail & Related papers (2023-09-22T06:19:11Z) - Recovering high-quality FODs from a reduced number of diffusion-weighted
images using a model-driven deep learning architecture [0.0]
We propose a model-driven deep learning FOD reconstruction architecture.
It ensures intermediate and output FODs produced by the network are consistent with the input DWI signals.
Our results show that the model-based deep learning architecture achieves competitive performance compared to a state-of-the-art FOD super-resolution network, FOD-Net.
arXiv Detail & Related papers (2023-07-28T02:47:34Z) - Breaking Through the Haze: An Advanced Non-Homogeneous Dehazing Method
based on Fast Fourier Convolution and ConvNeXt [14.917290578644424]
Haze usually leads to deteriorated images with low contrast, color shift and structural distortion.
We propose a novel two branch network that leverages 2D discrete wavelete transform (DWT), fast Fourier convolution (FFC) residual block and a pretrained ConvNeXt model.
Our model is able to effectively explore global contextual information and produce images with better perceptual quality.
arXiv Detail & Related papers (2023-05-08T02:59:02Z) - Consistent Direct Time-of-Flight Video Depth Super-Resolution [9.173767380836852]
Direct time-of-flight (dToF) sensors are promising for next-generation on-device 3D sensing.
We propose the first multi-frame fusion scheme to mitigate the spatial ambiguity resulting from the low-resolution dToF imaging.
We introduce DyDToF, the first synthetic RGB-dToF video dataset that features dynamic objects and a realistic dToF simulator.
arXiv Detail & Related papers (2022-11-16T04:16:20Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
Long-range correlation is essential for accurate monocular depth estimation.
We propose to leverage the Transformer to model this global context with an effective attention mechanism.
Our proposed model, termed DepthFormer, surpasses state-of-the-art monocular depth estimation methods with prominent margins.
arXiv Detail & Related papers (2022-03-27T05:03:56Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.