Distribution-Aware Calibration for Object Detection with Noisy Bounding Boxes
- URL: http://arxiv.org/abs/2308.12017v3
- Date: Tue, 27 Aug 2024 07:23:22 GMT
- Title: Distribution-Aware Calibration for Object Detection with Noisy Bounding Boxes
- Authors: Donghao Zhou, Jialin Li, Jinpeng Li, Jiancheng Huang, Qiang Nie, Yong Liu, Bin-Bin Gao, Qiong Wang, Pheng-Ann Heng, Guangyong Chen,
- Abstract summary: We propose DIStribution-aware CalibratiOn (DISCO) to model the spatial distribution of proposals for calibrating supervision signals.
Three distribution-aware techniques are developed to improve classification, localization, and interpretability.
- Score: 58.2797274877934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale well-annotated datasets are of great importance for training an effective object detector. However, obtaining accurate bounding box annotations is laborious and demanding. Unfortunately, the resultant noisy bounding boxes could cause corrupt supervision signals and thus diminish detection performance. Motivated by the observation that the real ground-truth is usually situated in the aggregation region of the proposals assigned to a noisy ground-truth, we propose DIStribution-aware CalibratiOn (DISCO) to model the spatial distribution of proposals for calibrating supervision signals. In DISCO, spatial distribution modeling is performed to statistically extract the potential locations of objects. Based on the modeled distribution, three distribution-aware techniques, i.e., distribution-aware proposal augmentation (DA-Aug), distribution-aware box refinement (DA-Ref), and distribution-aware confidence estimation (DA-Est), are developed to improve classification, localization, and interpretability, respectively. Extensive experiments on large-scale noisy image datasets (i.e., Pascal VOC and MS-COCO) demonstrate that DISCO can achieve state-of-the-art detection performance, especially at high noise levels. Code is available at https://github.com/Correr-Zhou/DISCO.
Related papers
- Towards the Uncharted: Density-Descending Feature Perturbation for Semi-supervised Semantic Segmentation [51.66997548477913]
We propose a novel feature-level consistency learning framework named Density-Descending Feature Perturbation (DDFP)
Inspired by the low-density separation assumption in semi-supervised learning, our key insight is that feature density can shed a light on the most promising direction for the segmentation classifier to explore.
The proposed DDFP outperforms other designs on feature-level perturbations and shows state of the art performances on both Pascal VOC and Cityscapes dataset.
arXiv Detail & Related papers (2024-03-11T06:59:05Z) - Diffusion-SS3D: Diffusion Model for Semi-supervised 3D Object Detection [77.23918785277404]
We present Diffusion-SS3D, a new perspective of enhancing the quality of pseudo-labels via the diffusion model for semi-supervised 3D object detection.
Specifically, we include noises to produce corrupted 3D object size and class label, distributions, and then utilize the diffusion model as a denoising process to obtain bounding box outputs.
We conduct experiments on the ScanNet and SUN RGB-D benchmark datasets to demonstrate that our approach achieves state-of-the-art performance against existing methods.
arXiv Detail & Related papers (2023-12-05T18:54:03Z) - SatDM: Synthesizing Realistic Satellite Image with Semantic Layout
Conditioning using Diffusion Models [0.0]
Denoising Diffusion Probabilistic Models (DDPMs) have demonstrated significant promise in synthesizing realistic images from semantic layouts.
In this paper, a conditional DDPM model capable of taking a semantic map and generating high-quality, diverse, and correspondingly accurate satellite images is implemented.
The effectiveness of our proposed model is validated using a meticulously labeled dataset introduced within the context of this study.
arXiv Detail & Related papers (2023-09-28T19:39:13Z) - Proposal Distribution Calibration for Few-Shot Object Detection [65.19808035019031]
In few-shot object detection (FSOD), the two-step training paradigm is widely adopted to mitigate the severe sample imbalance.
Unfortunately, the extreme data scarcity aggravates the proposal distribution bias, hindering the RoI head from evolving toward novel classes.
We introduce a simple yet effective proposal distribution calibration (PDC) approach to neatly enhance the localization and classification abilities of the RoI head.
arXiv Detail & Related papers (2022-12-15T05:09:11Z) - GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation [70.75100533512021]
In this paper, we formulate the label uncertainty problem as the diversity of potentially plausible bounding boxes of objects.
We propose GLENet, a generative framework adapted from conditional variational autoencoders, to model the one-to-many relationship between a typical 3D object and its potential ground-truth bounding boxes with latent variables.
The label uncertainty generated by GLENet is a plug-and-play module and can be conveniently integrated into existing deep 3D detectors.
arXiv Detail & Related papers (2022-07-06T06:26:17Z) - Towards Robust Adaptive Object Detection under Noisy Annotations [40.25050610617893]
Existing methods assume that the source domain labels are completely clean, yet large-scale datasets often contain error-prone annotations due to instance ambiguity.
We propose a Noise Latent Transferability Exploration framework to address this issue.
NLTE improves the mAP by 8.4% under 60% corrupted annotations and even approaches the ideal upper bound of training on a clean source dataset.
arXiv Detail & Related papers (2022-04-06T07:02:37Z) - Generalized Focal Loss: Learning Qualified and Distributed Bounding
Boxes for Dense Object Detection [85.53263670166304]
One-stage detector basically formulates object detection as dense classification and localization.
Recent trend for one-stage detectors is to introduce an individual prediction branch to estimate the quality of localization.
This paper delves into the representations of the above three fundamental elements: quality estimation, classification and localization.
arXiv Detail & Related papers (2020-06-08T07:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.