Digital-analog quantum computing of fermion-boson models in superconducting circuits
- URL: http://arxiv.org/abs/2308.12040v4
- Date: Fri, 21 Mar 2025 10:44:41 GMT
- Title: Digital-analog quantum computing of fermion-boson models in superconducting circuits
- Authors: Shubham Kumar, Narendra N. Hegade, Anne-Maria Visuri, B. A. Bhargava, Juan F. R. Hernandez, Enrique Solano, Francisco Albarrán-Arriagada, Gabriel Alvarado Barrios,
- Abstract summary: We propose a digital-analog quantum algorithm for simulating the Hubbard-Holstein model.<n>It comprises a linear chain of qubits connected by resonators, emulating electron-electron (e-e) and electron-phonon (e-p) interactions.<n>We show the reduction in the circuit depth of the DAQC algorithm, a sequence of digital steps and analog blocks, outperforming the purely digital approach.
- Score: 0.9674145073701153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-fidelity quantum simulations demand hardware-software co-design architectures, which are crucial for adapting to complex problems such as strongly correlated dynamics in condensed matter. By leveraging co-design strategies, we can enhance the performance of state-of-the-art quantum devices in the noisy intermediate quantum (NISQ) and early error-correction regimes. In this direction, we propose a digital-analog quantum algorithm for simulating the Hubbard-Holstein model, describing strongly-correlated fermion-boson interactions, in a suitable architecture with superconducting circuits. It comprises a linear chain of qubits connected by resonators, emulating electron-electron (e-e) and electron-phonon (e-p) interactions, as well as fermion tunneling. Our approach is adequate for digital-analog quantum computing (DAQC) of fermion-boson models, including those described by the Hubbard-Holstein model. We show the reduction in the circuit depth of the DAQC algorithm, a sequence of digital steps and analog blocks, outperforming the purely digital approach. We exemplify the quantum simulation of a half-filled two-site Hubbard-Holstein model. In this example, we obtain time-dependent state fidelities larger than 0.98, showing that our proposal is suitable for studying the dynamical behavior of solid-state systems. Our proposal opens the door to computing complex systems for chemistry, materials, and high-energy physics.
Related papers
- Variational Quantum Simulation of the Interacting Schwinger Model on a Trapped-Ion Quantum Processor [26.47874938214435]
In this work, we explore the multi-flavor lattice Schwinger model - a toy model inspired by quantum chromodynamics.
We employ a parametric quantum circuit executed on our quantum processor to identify ground states in different parameter regimes of the model.
The resulting states are analyzed via quantum state tomography, to reveal how characteristic properties such as correlations in the output state change.
arXiv Detail & Related papers (2025-04-29T14:43:57Z) - Design and Benchmarks for Emulating Kondo Dynamics on a Quantum Chip [0.0]
We numerically determine the impurity magnetization, entanglement between impurity and fermionic sites and energy as a function of time.
This work opens up the perspective of studying the dynamics of electronic quantum many-body states on quantum chips of the NISQ era.
arXiv Detail & Related papers (2025-01-15T00:28:13Z) - Ground-State Preparation of the Fermi-Hubbard Model on a Quantum Computer with 2D Topology via Quantum Eigenvalue Transformation of Unitary Matrices [0.0]
We apply the QETU algorithm to the $2 times 2$ Fermi-Hubbard model.
We present circuit simplifications tailored to the model and introduce a mapping to a 9-qubit grid-like hardware architecture inspired by fermionic swap networks.
arXiv Detail & Related papers (2024-11-27T17:32:17Z) - Quantum circuits for digital quantum simulation of nonlocal electron-phonon coupling [0.0]
We propose a digital quantum simulator of a one-dimensional lattice model describing an itinerant fermionic excitation.
A circuit that generates the natural initial (pre-quench) state of this system is presented.
arXiv Detail & Related papers (2024-10-10T17:07:57Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Dynamical mean-field theory for the Hubbard-Holstein model on a quantum
device [0.0]
We report a demonstration of solving the dynamical mean-field theory (DMFT) impurity problem for the Hubbard-Holstein model on the IBM 27-qubit Quantum Falcon Processor Kawasaki.
This opens up the possibility to investigate strongly correlated electron systems coupled to bosonic degrees of freedom and impurity problems with frequency-dependent interactions.
arXiv Detail & Related papers (2023-01-05T00:36:21Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum simulation of fermionic systems using hybrid digital-analog
quantum computing approach [0.0]
We show how digital-analog approach can be applied to simulate the dynamics of fermionic systems.
We find that an optimal connectivity topology of qubits for the digital-analog simulation of fermionic systems of arbitrary dimensionality is a chain for spinless fermions and a ladder for spin-1/2 particles.
arXiv Detail & Related papers (2021-12-30T18:24:47Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Digital-analog quantum simulation of fermionic models [0.0]
We introduce a digital-analog quantum algorithm to simulate a wide class of fermionic Hamiltonians.
These methods allow quantum algorithms to run beyond digital versions via an efficient use of coherence time.
arXiv Detail & Related papers (2021-03-29T15:25:23Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - The quantum sine-Gordon model with quantum circuits [0.0]
We numerically investigate a one-dimensional, faithful, analog, quantum electronic circuit simulator built out of Josephson junctions.
We provide numerical evidence that the parameters required to realize the quantum sine-Gordon model are accessible with modern-day superconducting circuit technology.
arXiv Detail & Related papers (2020-07-14T07:39:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.