Thermalization and Criticality on an Analog-Digital Quantum Simulator
- URL: http://arxiv.org/abs/2405.17385v2
- Date: Mon, 8 Jul 2024 18:10:27 GMT
- Title: Thermalization and Criticality on an Analog-Digital Quantum Simulator
- Authors: Trond I. Andersen, Nikita Astrakhantsev, Amir H. Karamlou, Julia Berndtsson, Johannes Motruk, Aaron Szasz, Jonathan A. Gross, Alexander Schuckert, Tom Westerhout, Yaxing Zhang, Ebrahim Forati, Dario Rossi, Bryce Kobrin, Agustin Di Paolo, Andrey R. Klots, Ilya Drozdov, Vladislav D. Kurilovich, Andre Petukhov, Lev B. Ioffe, Andreas Elben, Aniket Rath, Vittorio Vitale, Benoit Vermersch, Rajeev Acharya, Laleh Aghababaie Beni, Kyle Anderson, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Brian Ballard, Joseph C. Bardin, Andreas Bengtsson, Alexander Bilmes, Gina Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton, David A. Browne, Brett Buchea, Bob B. Buckley, David A. Buell, Tim Burger, Brian Burkett, Nicholas Bushnell, Anthony Cabrera, Juan Campero, Hung-Shen Chang, Zijun Chen, Ben Chiaro, Jahan Claes, Agnetta Y. Cleland, Josh Cogan, Roberto Collins, Paul Conner, William Courtney, Alexander L. Crook, Sayan Das, Dripto M. Debroy, Laura De Lorenzo, Alexander Del Toro Barba, Sean Demura, Paul Donohoe, Andrew Dunsworth, Clint Earle, Alec Eickbusch, Aviv Moshe Elbag, Mahmoud Elzouka, Catherine Erickson, Lara Faoro, Reza Fatemi, Vinicius S. Ferreira, Leslie Flores Burgos, Austin G. Fowler, Brooks Foxen, Suhas Ganjam, Robert Gasca, William Giang, Craig Gidney, Dar Gilboa, Marissa Giustina, Raja Gosula, Alejandro Grajales Dau, Dietrich Graumann, Alex Greene, Steve Habegger, Michael C. Hamilton, Monica Hansen, Matthew P. Harrigan, Sean D. Harrington, Stephen Heslin, Paula Heu, Gordon Hill, Markus R. Hoffmann, Hsin-Yuan Huang, Trent Huang, Ashley Huff, William J. Huggins, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Stephen Jordan, Chaitali Joshi, Pavol Juhas, Dvir Kafri, Hui Kang, Kostyantyn Kechedzhi, Trupti Khaire, Tanuj Khattar, Mostafa Khezri, Mária Kieferová, Seon Kim, Alexei Kitaev, Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa, John Mark Kreikebaum, David Landhuis, Brandon W. Langley, Pavel Laptev, Kim-Ming Lau, Loïck Le Guevel, Justin Ledford, Joonho Lee, Kenny Lee, Yuri D. Lensky, Brian J. Lester, Wing Yan Li, Alexander T. Lill, Wayne Liu, William P. Livingston, Aditya Locharla, Daniel Lundahl, Aaron Lunt, Sid Madhuk, Ashley Maloney, Salvatore Mandrà, Leigh S. Martin, Orion Martin, Steven Martin, Cameron Maxfield, Jarrod R. McClean, Matt McEwen, Seneca Meeks, Kevin C. Miao, Amanda Mieszala, Sebastian Molina, Shirin Montazeri, Alexis Morvan, Ramis Movassagh, Charles Neill, Ani Nersisyan, Michael Newman, Anthony Nguyen, Murray Nguyen, Chia-Hung Ni, Murphy Yuezhen Niu, William D. Oliver, Kristoffer Ottosson, Alex Pizzuto, Rebecca Potter, Orion Pritchard, Leonid P. Pryadko, Chris Quintana, Matthew J. Reagor, David M. Rhodes, Gabrielle Roberts, Charles Rocque, Eliott Rosenberg, Nicholas C. Rubin, Negar Saei, Kannan Sankaragomathi, Kevin J. Satzinger, Henry F. Schurkus, Christopher Schuster, Michael J. Shearn, Aaron Shorter, Noah Shutty, Vladimir Shvarts, Volodymyr Sivak, Jindra Skruzny, Spencer Small, W. Clarke Smith, Sofia Springer, George Sterling, Jordan Suchard, Marco Szalay, Alex Sztein, Douglas Thor, Alfredo Torres, M. Mert Torunbalci, Abeer Vaishnav, Sergey Vdovichev, Benjamin Villalonga, Catherine Vollgraff Heidweiller, Steven Waltman, Shannon X. Wang, Theodore White, Kristi Wong, Bryan W. Woo, Cheng Xing, Z. Jamie Yao, Ping Yeh, Bicheng Ying, Juhwan Yoo, Noureldin Yosri, Grayson Young, Adam Zalcman, Ningfeng Zhu, Nicholas Zobrist, Hartmut Neven, Ryan Babbush, Sergio Boixo, Jeremy Hilton, Erik Lucero, Anthony Megrant, Julian Kelly, Yu Chen, Vadim Smelyanskiy, Guifre Vidal, Pedram Roushan, Andreas M. Lauchli, Dmitry A. Abanin, Xiao Mi,
- Abstract summary: We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
- Score: 133.58336306417294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. Emulating a two-dimensional (2D) XY quantum magnet, we leverage a wide range of measurement techniques to study quantum states after ramps from an antiferromagnetic initial state. We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions attributed to the interplay between quantum and classical coarsening of the correlated domains. This interpretation is corroborated by injecting variable energy density into the initial state, which enables studying the effects of the eigenstate thermalization hypothesis (ETH) in targeted parts of the eigenspectrum. Finally, we digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization. These results establish the efficacy of superconducting analog-digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics.
Related papers
- Slow Relaxation in a Glassy Quantum Circuit [0.0]
We introduce and analyze a Floquet random quantum circuit that can be tuned between glassy and fully ergodic behavior.
Using an effective field theory for random quantum circuits, we analyze the correlations between quasienergy eigenstates.
We show that the ramp of the spectral form factor is enhanced by a factor of the number of sectors in the glassy regime.
arXiv Detail & Related papers (2024-10-30T17:58:08Z) - Digital simulation of zero-temperature spontaneous symmetry breaking in a superconducting lattice processor [3.9533784716978406]
We report an experimental simulation of antiferromagnetic (AFM) and ferromagnetic (FM) phase formation in a superconducting lattice.
We observe the emergence of signatures of SSB-induced phase transition through a connected correlation function.
Our results open perspectives for new advances in condensed matter physics.
arXiv Detail & Related papers (2024-09-26T08:15:18Z) - A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Dynamics of a Nonequilibrium Discontinuous Quantum Phase Transition in a
Spinor Bose-Einstein Condensate [0.0]
We show that critical scaling behavior in a first-order quantum phase transition can be understood from generic properties.
We predict the onset of the decay of the metastable state on short times scales and the number of resulting phase-separated ferromagnetic domains at longer times.
arXiv Detail & Related papers (2023-12-27T12:39:23Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Coherent quantum annealing in a programmable 2000-qubit Ising chain [1.2472275770062884]
We show coherent evolution through a quantum phase transition in the paradigmatic setting of the 1D transverse-field Ising chain.
Results are in quantitative agreement with analytical solutions to the closed-system quantum model.
These experiments demonstrate that large-scale quantum annealers can be operated coherently.
arXiv Detail & Related papers (2022-02-11T19:00:00Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.