論文の概要: Layer-wise Feedback Propagation
- arxiv url: http://arxiv.org/abs/2308.12053v1
- Date: Wed, 23 Aug 2023 10:48:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-24 14:39:45.577877
- Title: Layer-wise Feedback Propagation
- Title(参考訳): 層間フィードバック伝搬
- Authors: Leander Weber, Jim Berend, Alexander Binder, Thomas Wiegand, Wojciech
Samek, Sebastian Lapuschkin
- Abstract要約: 本稿では、ニューラルネットワークのような予測器のための新しいトレーニング手法であるLFP(Layer-wise Feedback Propagation)を提案する。
LFPは、与えられたタスクの解決に対するそれぞれの貢献に基づいて、個々のコネクションに報酬を割り当てる。
各種モデルやデータセットの勾配降下に匹敵する性能を達成できることの有効性を実証する。
- 参考スコア(独自算出の注目度): 53.00944147633484
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we present Layer-wise Feedback Propagation (LFP), a novel
training approach for neural-network-like predictors that utilizes
explainability, specifically Layer-wise Relevance Propagation(LRP), to assign
rewards to individual connections based on their respective contributions to
solving a given task. This differs from traditional gradient descent, which
updates parameters towards anestimated loss minimum. LFP distributes a reward
signal throughout the model without the need for gradient computations. It then
strengthens structures that receive positive feedback while reducingthe
influence of structures that receive negative feedback. We establish the
convergence of LFP theoretically and empirically, and demonstrate its
effectiveness in achieving comparable performance to gradient descent on
various models and datasets. Notably, LFP overcomes certain limitations
associated with gradient-based methods, such as reliance on meaningful
derivatives. We further investigate how the different LRP-rules can be extended
to LFP, what their effects are on training, as well as potential applications,
such as training models with no meaningful derivatives, e.g., step-function
activated Spiking Neural Networks (SNNs), or for transfer learning, to
efficiently utilize existing knowledge.
- Abstract(参考訳): 本稿では、ニューラルネットワークのような予測器のための新しいトレーニング手法LFP(Layer-wise Feedback Propagation)を提案し、説明可能性、特にLayer-wise Relevance Propagation(LRP)を利用して、与えられたタスクの解決へのそれぞれの貢献に基づいて、個々のコネクションに対する報酬を割り当てる。
これは、推定損失最小限にパラメータを更新する従来の勾配降下とは異なる。
LFPは勾配計算を必要とせずにモデル全体に報酬信号を分配する。
そして、正のフィードバックを受ける構造を強化し、負のフィードバックを受ける構造の影響を減らす。
LFPの収束性を理論的・実証的に確立し,様々なモデルやデータセット上での勾配降下に匹敵する性能を示す。
特にLFPは、有意義な微分への依存など、勾配に基づく手法に関連する特定の制限を克服している。
さらに,lrp-ruleをlfpに拡張する方法や,そのトレーニングへの影響,さらには,ステップ関数活性化スパイクニューラルネットワーク(snns)やトランスファー学習など,有意義な派生性のないトレーニングモデルなど,既存の知識を効率的に活用するための潜在的な応用について検討する。
関連論文リスト
- On Divergence Measures for Training GFlowNets [3.7277730514654555]
生成フローネットワーク(Generative Flow Networks, GFlowNets)は、構成可能なオブジェクト上の非正規分布のサンプルとして設計された、償却推論モデルである。
伝統的に、GFlowNetsのトレーニング手順は、提案(フォワードポリシー)とターゲット(バックポリシー)の分布の対数二乗差を最小限にすることを目指している。
我々は、Renyi-$alpha$'s, Tsallis-$alpha$'s, reverse and forward KL'sという4つの分岐測度を概観し、GFlowNetsの学習文脈における勾配に対する統計的に効率的な推定器を設計する。
論文 参考訳(メタデータ) (2024-10-12T03:46:52Z) - Learning Point Spread Function Invertibility Assessment for Image Deconvolution [14.062542012968313]
ニューラルネットワークを用いて任意のPSFの可逆性を学習するために非線形アプローチを用いるメトリクスを提案する。
マッピングされたPSFとユニットインパルスとの差は、DLネットワークによるインバージョンの成功率が高いことを示している。
論文 参考訳(メタデータ) (2024-05-25T20:00:27Z) - Random Linear Projections Loss for Hyperplane-Based Optimization in Neural Networks [22.348887008547653]
この研究はRandom Linear Projections (RLP)損失を導入し、これはデータ内の幾何学的関係を利用してトレーニング効率を向上させる新しいアプローチである。
ベンチマークデータセットと合成例を用いて実施した経験的評価では、従来の損失関数でトレーニングされたニューラルネットワークは、従来の損失関数でトレーニングされたニューラルネットワークよりも優れていたことが示されている。
論文 参考訳(メタデータ) (2023-11-21T05:22:39Z) - Regression as Classification: Influence of Task Formulation on Neural
Network Features [16.239708754973865]
ニューラルネットワークは、勾配に基づく手法を用いて2乗損失を最小限に抑えることにより、回帰問題を解決するために訓練することができる。
実践者は、しばしば回帰を分類問題として再編成し、クロスエントロピー損失のトレーニングがより良いパフォーマンスをもたらすことを観察する。
2層ReLUネットワークに着目して、勾配に基づく最適化によって引き起こされる暗黙のバイアスが、この現象を部分的に説明できるかを検討する。
論文 参考訳(メタデータ) (2022-11-10T15:13:23Z) - Minimizing Control for Credit Assignment with Strong Feedback [65.59995261310529]
ディープニューラルネットワークにおける勾配に基づくクレジット割り当ての現在の手法は、無限小のフィードバック信号を必要とする。
我々は、神経活動に対する強いフィードバックと勾配に基づく学習を組み合わせることで、ニューラルネットワークの最適化に関する新たな視点を自然に導き出すことを示す。
DFCにおける強いフィードバックを用いることで、空間と時間において完全に局所的な学習規則を用いることで、前向きとフィードバックの接続を同時に学習できることを示す。
論文 参考訳(メタデータ) (2022-04-14T22:06:21Z) - Towards Scaling Difference Target Propagation by Learning Backprop
Targets [64.90165892557776]
Different Target Propagationは,Gauss-Newton(GN)最適化と密接な関係を持つ生物学的に証明可能な学習アルゴリズムである。
本稿では、DTPがBPを近似し、階層的なフィードバックウェイトトレーニングを復元できる新しいフィードバックウェイトトレーニング手法を提案する。
CIFAR-10 と ImageNet 上で DTP が達成した最高の性能について報告する。
論文 参考訳(メタデータ) (2022-01-31T18:20:43Z) - Random Fourier Feature Based Deep Learning for Wireless Communications [18.534006003020828]
本稿では,RFFに基づく深層学習の有効性を解析的に定量化する。
新しい分散依存RFFが提案され、トレーニングの複雑さの低いDLアーキテクチャが促進される。
提案したすべてのシミュレーションにおいて,提案した分布依存型RFFはRFFよりも有意に優れていた。
論文 参考訳(メタデータ) (2021-01-13T18:39:36Z) - Implicit Under-Parameterization Inhibits Data-Efficient Deep
Reinforcement Learning [97.28695683236981]
さらなる勾配更新により、現在の値ネットワークの表現性が低下する。
AtariとGymのベンチマークでは、オフラインとオンラインのRL設定の両方でこの現象を実証する。
論文 参考訳(メタデータ) (2020-10-27T17:55:16Z) - A Theoretical Framework for Target Propagation [75.52598682467817]
我々は、バックプロパゲーション(BP)の代替として人気があるが、まだ完全には理解されていないターゲット伝搬(TP)を解析する。
提案理論は,TPがガウス・ニュートン最適化と密接に関係していることを示し,BPとは大きく異なる。
我々は,フィードバックウェイトトレーニングを改善する新しいリコンストラクション損失を通じて,この問題に対する第1の解決策を提供する。
論文 参考訳(メタデータ) (2020-06-25T12:07:06Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
本稿では,深層学習に基づく知識追跡(DLKT)モデルの解釈可能性問題に対処するポストホック手法を提案する。
具体的には、RNNに基づくDLKTモデルを解釈するために、レイヤワイズ関連伝搬法(LRP)を適用することに焦点をあてる。
実験結果から,DLKTモデルの予測をLRP法で解釈できることを示す。
論文 参考訳(メタデータ) (2020-05-13T04:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。