論文の概要: Bugsplainer: Leveraging Code Structures to Explain Software Bugs with
Neural Machine Translation
- arxiv url: http://arxiv.org/abs/2308.12267v1
- Date: Wed, 23 Aug 2023 17:35:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 12:55:29.207193
- Title: Bugsplainer: Leveraging Code Structures to Explain Software Bugs with
Neural Machine Translation
- Title(参考訳): Bugsplainer: ニューラルネットワークによるソフトウェアバグの解説にコード構造を活用する
- Authors: Parvez Mahbub, Mohammad Masudur Rahman, Ohiduzzaman Shuvo, Avinash
Gopal
- Abstract要約: Bugsplainerは、バグ修正コミットの大規模なコーパスから学ぶことによって、ソフトウェアバグの自然言語説明を生成する。
Bugsplainerはバグを推論するためにコード構造を利用し、テキスト生成モデルの微調整バージョンであるCodeT5を採用している。
- 参考スコア(独自算出の注目度): 4.519754139322585
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Software bugs cost the global economy billions of dollars each year and take
up ~50% of the development time. Once a bug is reported, the assigned developer
attempts to identify and understand the source code responsible for the bug and
then corrects the code. Over the last five decades, there has been significant
research on automatically finding or correcting software bugs. However, there
has been little research on automatically explaining the bugs to the
developers, which is essential but a highly challenging task. In this paper, we
propose Bugsplainer, a novel web-based debugging solution that generates
natural language explanations for software bugs by learning from a large corpus
of bug-fix commits. Bugsplainer leverages code structures to reason about a bug
and employs the fine-tuned version of a text generation model, CodeT5, to
generate the explanations.
Tool video: https://youtu.be/xga-ScvULpk
- Abstract(参考訳): ソフトウェアバグは、毎年数十億ドルの経済費を負担し、開発時間の50%を占める。
バグが報告されると、割り当てられた開発者はバグの原因となるソースコードを特定して理解し、修正する。
過去50年間、ソフトウェアバグの自動発見や修正に関する重要な研究が続けられてきた。
しかし、開発者に対してバグを自動的に説明する研究はほとんど行われていない。
本稿では,多数のバグフィックスコミットのコーパスから学習することにより,ソフトウェアバグの自然言語説明を生成する,webベースのデバッグソリューションであるbugsplainerを提案する。
Bugsplainerはバグを推論するためにコード構造を利用し、テキスト生成モデルの微調整バージョンであるCodeT5を使って説明を生成する。
ツールビデオ: https://youtu.be/xga-ScvULpk
関連論文リスト
- Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
GitHub上のJavaオープンソースプロジェクトからの2,401のコードレビューコメントを分析した。
改善提案の83.9%が承認され、統合され、1%未満が後に復活した。
論文 参考訳(メタデータ) (2024-10-29T12:21:23Z) - What is a "bug"? On subjectivity, epistemic power, and implications for
software research [8.116831482130555]
バグ」は少なくとも1870年代からの工学的「欠陥」の口語である。
現代のソフトウェア指向の定義のほとんどは、開発者が意図したものと、プログラムが実際に何をするかを区別するものである。
バグをファインディングするのは簡単だ" と最初に言うのは,“バグパターンはしばしばエラーとなるコード”だ。
論文 参考訳(メタデータ) (2024-02-13T01:52:42Z) - A Novel Approach for Automatic Program Repair using Round-Trip
Translation with Large Language Models [50.86686630756207]
研究によると、ある文の文法的誤りは、それを他の言語に翻訳し、その語を返せば修正できる。
現在の自動プログラム修復(APR)生成モデルは、ソースコードで事前訓練され、修正のために微調整されている。
本稿では,あるプログラミング言語から別のプログラミング言語,あるいは自然言語へのコード変換,そして,その逆といった,微調整ステップをバイパスし,ラウンド・トリップ変換(RTT)を用いる手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T22:36:31Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench - LLM(Large Language Models)のベンチマーク。
C++、Java、Pythonの4つの主要なバグカテゴリと18のマイナータイプをカバーする。
ゼロショットシナリオで2つの商用および4つのオープンソースモデルを評価する。
論文 参考訳(メタデータ) (2024-01-09T15:46:38Z) - Automated Bug Generation in the era of Large Language Models [6.0770779409377775]
BugFarmは任意のコードを複数の複雑なバグに変換する。
BUGFARMが生成した1.9万以上の変異株から435k以上のバグを総合的に評価する。
論文 参考訳(メタデータ) (2023-10-03T20:01:51Z) - Large Language Models of Code Fail at Completing Code with Potential
Bugs [30.80172644795715]
リアルタイムコード提案に触発されたバグコード補完問題について検討する。
潜在的なバグの存在は、高性能なCode-LLMの生成性能を著しく低下させる。
論文 参考訳(メタデータ) (2023-06-06T06:35:27Z) - Teaching Large Language Models to Self-Debug [62.424077000154945]
大規模言語モデル(LLM)は、コード生成において素晴らしいパフォーマンスを達成した。
本稿では,大規模言語モデルで予測プログラムを数発のデモでデバッグする自己デバッグを提案する。
論文 参考訳(メタデータ) (2023-04-11T10:43:43Z) - Explaining Software Bugs Leveraging Code Structures in Neural Machine
Translation [5.079750706023254]
Bugsplainerは、バグ修正コミットの大規模なコーパスから学ぶことによって、ソフトウェアバグの自然言語説明を生成する。
3つのパフォーマンス指標を用いて評価したところ、BugsplainerはGoogleの標準に従って理解しやすく良い説明を生成できることがわかった。
また、Bugsplainerによる説明がベースラインよりも正確で、より正確で、より有用であることが判明した、20人の参加者を対象にした開発者スタディも実施しました。
論文 参考訳(メタデータ) (2022-12-08T22:19:45Z) - Using Developer Discussions to Guide Fixing Bugs in Software [51.00904399653609]
我々は,タスク実行前に利用可能であり,また自然発生しているバグレポートの議論を,開発者による追加情報の必要性を回避して利用することを提案する。
このような議論から派生したさまざまな自然言語コンテキストがバグ修正に役立ち、オラクルのバグ修正コミットに対応するコミットメッセージの使用よりもパフォーマンスの向上につながることを実証する。
論文 参考訳(メタデータ) (2022-11-11T16:37:33Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssueは、現実的なバグローカライゼーションのためのベンチマークである。
実際のJavaバグと合成Javaバグの多様性を備えた一般的なベンチマークを提供する。
われわれは,バグローカライゼーションの最先端技術として,APRの性能向上と,現代の開発サイクルへの適用性の向上を期待している。
論文 参考訳(メタデータ) (2022-07-21T20:17:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。