Bugsplainer: Leveraging Code Structures to Explain Software Bugs with
Neural Machine Translation
- URL: http://arxiv.org/abs/2308.12267v1
- Date: Wed, 23 Aug 2023 17:35:16 GMT
- Title: Bugsplainer: Leveraging Code Structures to Explain Software Bugs with
Neural Machine Translation
- Authors: Parvez Mahbub, Mohammad Masudur Rahman, Ohiduzzaman Shuvo, Avinash
Gopal
- Abstract summary: Bugsplainer generates natural language explanations for software bugs by learning from a large corpus of bug-fix commits.
Bugsplainer leverages code structures to reason about a bug and employs the fine-tuned version of a text generation model, CodeT5.
- Score: 4.519754139322585
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Software bugs cost the global economy billions of dollars each year and take
up ~50% of the development time. Once a bug is reported, the assigned developer
attempts to identify and understand the source code responsible for the bug and
then corrects the code. Over the last five decades, there has been significant
research on automatically finding or correcting software bugs. However, there
has been little research on automatically explaining the bugs to the
developers, which is essential but a highly challenging task. In this paper, we
propose Bugsplainer, a novel web-based debugging solution that generates
natural language explanations for software bugs by learning from a large corpus
of bug-fix commits. Bugsplainer leverages code structures to reason about a bug
and employs the fine-tuned version of a text generation model, CodeT5, to
generate the explanations.
Tool video: https://youtu.be/xga-ScvULpk
Related papers
- Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
We analyzed 2,401 code review comments from Java open-source projects on GitHub.
83.9% of suggestions for improvement were accepted and integrated, with fewer than 1% later reverted.
arXiv Detail & Related papers (2024-10-29T12:21:23Z) - What is a "bug"? On subjectivity, epistemic power, and implications for
software research [8.116831482130555]
"Bug" has been a colloquialism for an engineering "defect" at least since the 1870s.
Most modern software-oriented definitions speak to a disconnect between what a developer intended and what a program actually does.
"Finding bugs is easy" begins by saying "bug patterns are code that are often errors"
arXiv Detail & Related papers (2024-02-13T01:52:42Z) - A Novel Approach for Automatic Program Repair using Round-Trip
Translation with Large Language Models [50.86686630756207]
Research shows that grammatical mistakes in a sentence can be corrected by translating it to another language and back.
Current generative models for Automatic Program Repair (APR) are pre-trained on source code and fine-tuned for repair.
This paper proposes bypassing the fine-tuning step and using Round-Trip Translation (RTT): translation of code from one programming language to another programming or natural language, and back.
arXiv Detail & Related papers (2024-01-15T22:36:31Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench is a benchmark for Large Language Models (LLMs)
It covers four major bug categories and 18 minor types in C++, Java, and Python.
We evaluate two commercial and four open-source models in a zero-shot scenario.
arXiv Detail & Related papers (2024-01-09T15:46:38Z) - Automated Bug Generation in the era of Large Language Models [6.0770779409377775]
BugFarm transforms arbitrary code into multiple complex bugs.
A comprehensive evaluation of 435k+ bugs from over 1.9M mutants generated by BUGFARM.
arXiv Detail & Related papers (2023-10-03T20:01:51Z) - Large Language Models of Code Fail at Completing Code with Potential
Bugs [30.80172644795715]
We study the buggy-code completion problem inspired by real-time code suggestion.
We find that the presence of potential bugs significantly degrades the generation performance of the high-performing Code-LLMs.
arXiv Detail & Related papers (2023-06-06T06:35:27Z) - Teaching Large Language Models to Self-Debug [62.424077000154945]
Large language models (LLMs) have achieved impressive performance on code generation.
We propose Self- Debugging, which teaches a large language model to debug its predicted program via few-shot demonstrations.
arXiv Detail & Related papers (2023-04-11T10:43:43Z) - Explaining Software Bugs Leveraging Code Structures in Neural Machine
Translation [5.079750706023254]
Bugsplainer generates natural language explanations for software bugs by learning from a large corpus of bug-fix commits.
Our evaluation using three performance metrics shows that Bugsplainer can generate understandable and good explanations according to Google's standard.
We also conduct a developer study involving 20 participants where the explanations from Bugsplainer were found to be more accurate, more precise, more concise and more useful than the baselines.
arXiv Detail & Related papers (2022-12-08T22:19:45Z) - Using Developer Discussions to Guide Fixing Bugs in Software [51.00904399653609]
We propose using bug report discussions, which are available before the task is performed and are also naturally occurring, avoiding the need for additional information from developers.
We demonstrate that various forms of natural language context derived from such discussions can aid bug-fixing, even leading to improved performance over using commit messages corresponding to the oracle bug-fixing commits.
arXiv Detail & Related papers (2022-11-11T16:37:33Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssue is a benchmark for realistic bug localization.
We provide a general benchmark with a diversity of real and synthetic Java bugs.
We hope to advance the state of the art in bug localization, in turn improving APR performance and increasing its applicability to the modern development cycle.
arXiv Detail & Related papers (2022-07-21T20:17:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.