論文の概要: Gaze Estimation on Spresense
- arxiv url: http://arxiv.org/abs/2308.12313v1
- Date: Wed, 23 Aug 2023 07:11:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 17:00:47.457685
- Title: Gaze Estimation on Spresense
- Title(参考訳): Spresense による視線推定
- Authors: Thomas Ruegg, Pietro Bonazzi, Andrea Ronco
- Abstract要約: 本報告では,Sony Spresenseマイクロコントローラボードを用いた視線推定システムの実装について述べる。
このレポートは、使用する視線推定モデルを含む、システムのアーキテクチャに関する洞察も提供する。
システムのデモがあり、機能と性能を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaze estimation is a valuable technology with numerous applications in fields
such as human-computer interaction, virtual reality, and medicine. This report
presents the implementation of a gaze estimation system using the Sony
Spresense microcontroller board and explores its performance in latency,
MAC/cycle, and power consumption. The report also provides insights into the
system's architecture, including the gaze estimation model used. Additionally,
a demonstration of the system is presented, showcasing its functionality and
performance. Our lightweight model TinyTrackerS is a mere 169Kb in size, using
85.8k parameters and runs on the Spresense platform at 3 FPS.
- Abstract(参考訳): 視線推定は、人間とコンピュータの相互作用、仮想現実、医学などの分野に多くの応用がある貴重な技術である。
本稿では,sony spresenseマイクロコントローラを用いた視線推定システムの実装と,そのレイテンシ,mac/cycle,電力消費における性能について検討する。
レポートはまた、使用する視線推定モデルを含むシステムのアーキテクチャに関する洞察も提供する。
さらに、システムのデモがあり、機能とパフォーマンスを示している。
我々の軽量モデルTinyTrackerSは、85.8kパラメータを使用してわずか169Kbの大きさで、Spresenseプラットフォーム上で3FPSで動作する。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - Is That Rain? Understanding Effects on Visual Odometry Performance for Autonomous UAVs and Efficient DNN-based Rain Classification at the Edge [1.8936798735951972]
最先端のローカルトラッキングと軌道計画は通常、飛行制御アルゴリズムにカメラセンサーを入力して実行される。
最先端のビジュアル・オドメトリーシステムでは, 1.5mの最悪ケース平均追跡誤差が可能であることを示す。
我々は、モバイルおよび制約されたデプロイメントシナリオに適したディープニューラルネットワークモデルのセットをトレーニングし、これらの雨の条件を効率的に正確に分類できる範囲を判断する。
論文 参考訳(メタデータ) (2024-07-17T15:47:25Z) - High-accuracy Vision-Based Attitude Estimation System for Air-Bearing
Spacecraft Simulators [0.0]
本稿では, 単眼カメラとフィデューシャルマーカーのセットを用いて, 回転空調プラットフォームに対する姿勢を計算するための, 新規で汎用的な手法について述べる。
システムパラメータの予備推定を行う自動校正手順を示す。
その結果,約12arcsecと$sim$37arcsecの順に1-sigmaの精度が期待された。
論文 参考訳(メタデータ) (2023-12-13T13:55:36Z) - Implementation of a perception system for autonomous vehicles using a
detection-segmentation network in SoC FPGA [0.0]
我々は,MultiTaskV3検出セグメンテーションネットワークを,単一アーキテクチャ内で両方の機能を実現する知覚システムの基礎として用いている。
システム全体の電力消費はCPUベースの実装に比べて比較的少ない。
また、オブジェクト検出のmAPの97%以上、画像分割のmIoUの90%以上を達成している。
論文 参考訳(メタデータ) (2023-07-17T17:44:18Z) - A Control-Centric Benchmark for Video Prediction [69.22614362800692]
本稿では,アクション条件付きビデオ予測のベンチマークを,制御ベンチマークの形式で提案する。
私たちのベンチマークには、11のタスクカテゴリと310のタスクインスタンス定義を備えたシミュレーション環境が含まれています。
次に、ベンチマークを活用して、スケールするモデルサイズ、トレーニングデータの量、モデルアンサンブルの影響を調査します。
論文 参考訳(メタデータ) (2023-04-26T17:59:45Z) - EV-Catcher: High-Speed Object Catching Using Low-latency Event-based
Neural Networks [107.62975594230687]
イベントカメラが優れており、高速移動物体の衝突位置を正確に推定するアプリケーションを実証する。
イベントデータを低レイテンシでエンコードするために,Binary Event History Image(BEHI)と呼ばれる軽量なイベント表現を導入する。
計算制約のある組込みプラットフォーム上でも最大13m/sの速さで, 異なる場所をターゲットとした球のキャッチにおいて, 81%の成功率を達成することができることを示す。
論文 参考訳(メタデータ) (2023-04-14T15:23:28Z) - ETH-XGaze: A Large Scale Dataset for Gaze Estimation under Extreme Head
Pose and Gaze Variation [52.5465548207648]
ETH-XGazeは100万以上の高解像度画像からなる新しい視線推定データセットである。
我々のデータセットは、異なる頭部ポーズと視線角度で視線推定手法のロバスト性を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2020-07-31T04:15:53Z) - Event Based, Near Eye Gaze Tracking Beyond 10,000Hz [41.23347304960948]
我々は,1万Hzを超える更新率を有するハイブリッドフレームイベントベースの近目視追跡システムを提案する。
我々のシステムは、定期的にサンプリングされたフレームと適応的にサンプリングされたイベントを同時に取得する新興イベントカメラの上に構築されている。
我々は,仮想現実と拡張現実のための,次世代の超低遅延視線コンテンツレンダリングおよび表示技術の実現を期待している。
論文 参考訳(メタデータ) (2020-04-07T17:57:18Z) - Gaze-Sensing LEDs for Head Mounted Displays [73.88424800314634]
仮想現実(VR)アプリケーションのための低消費電力の視線トラッカーを作成するために,LEDのセンサ機能を利用する。
我々は,視線推定法が複雑な次元削減技術を必要としないことを示した。
論文 参考訳(メタデータ) (2020-03-18T23:03:06Z) - A Neuromorphic Proto-Object Based Dynamic Visual Saliency Model with an
FPGA Implementation [1.2387676601792899]
本稿では, プロトオブジェクトの概念に基づくニューロモルフィック, ボトムアップ, ダイナミックビジュアル・サリエンシ・モデルを提案する。
このモデルは、一般的に使用されるビデオデータセット上で人間の目の固定を予測する際に、最先端のダイナミック・ビジュアル・サリエンシ・モデルより優れている。
我々は、Opal Kelly 7350 Kintex-7ボード上で、フィールドプログラマブルゲートアレイによるモデルの実装を紹介する。
論文 参考訳(メタデータ) (2020-02-27T03:31:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。