論文の概要: Diffusion-based Image Translation with Label Guidance for Domain
Adaptive Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2308.12350v1
- Date: Wed, 23 Aug 2023 18:01:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 16:48:29.565004
- Title: Diffusion-based Image Translation with Label Guidance for Domain
Adaptive Semantic Segmentation
- Title(参考訳): ドメイン適応セマンティックセマンティックセグメンテーションのためのラベル誘導を用いた拡散画像変換
- Authors: Duo Peng, Ping Hu, Qiuhong Ke, Jun Liu
- Abstract要約: ターゲットモデル学習のためのソースドメインからターゲットドメインへの変換は、ドメイン適応セマンティックセグメンテーション(DASS)において最も一般的な戦略の1つである。
既存の方法は、元の画像と翻訳された画像の間の意味的に一貫性のある局所的な詳細を保存するのに依然として苦労している。
本稿では、画像翻訳中にソースドメインラベルを明示的なガイダンスとして用いることにより、この問題に対処する革新的なアプローチを提案する。
- 参考スコア(独自算出の注目度): 35.44771460784343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Translating images from a source domain to a target domain for learning
target models is one of the most common strategies in domain adaptive semantic
segmentation (DASS). However, existing methods still struggle to preserve
semantically-consistent local details between the original and translated
images. In this work, we present an innovative approach that addresses this
challenge by using source-domain labels as explicit guidance during image
translation. Concretely, we formulate cross-domain image translation as a
denoising diffusion process and utilize a novel Semantic Gradient Guidance
(SGG) method to constrain the translation process, conditioning it on the
pixel-wise source labels. Additionally, a Progressive Translation Learning
(PTL) strategy is devised to enable the SGG method to work reliably across
domains with large gaps. Extensive experiments demonstrate the superiority of
our approach over state-of-the-art methods.
- Abstract(参考訳): ターゲットモデルを学習するためのソースドメインからターゲットドメインへの変換は、ドメイン適応セマンティックセグメンテーション(DASS)において最も一般的な戦略の1つである。
しかし、既存の手法では、元の画像と翻訳された画像の間で意味的に一貫性のある局所的な詳細を保存するのに苦労している。
本稿では,画像翻訳の際,ソースドメインラベルを明示的なガイダンスとして用いることにより,この課題に対処する革新的な手法を提案する。
具体的には,クロスドメイン画像翻訳を雑音拡散過程として定式化し,新しい意味勾配誘導(sgg)法を用いて,画素単位のソースラベルを条件付けして翻訳プロセスを制約する。
さらに、sgg法がギャップが大きい領域間で確実に動作するように、プログレッシブ翻訳学習(ptl)戦略を考案した。
広範な実験により,最先端手法に対するアプローチの優位性が実証された。
関連論文リスト
- Domain Agnostic Image-to-image Translation using Low-Resolution
Conditioning [6.470760375991825]
ドメインが関係するきめ細かい問題に対して,ドメインに依存しないi2i法を提案する。
本稿では、生成モデルを訓練し、関連するソース画像の固有情報を共有する画像を生成する新しいアプローチを提案する。
CelebA-HQ と AFHQ のデータセット上で,視覚的品質の向上を実証し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-05-08T19:58:49Z) - Unsupervised Domain Adaptation for Semantic Segmentation using One-shot
Image-to-Image Translation via Latent Representation Mixing [9.118706387430883]
超高解像度画像のセマンティックセグメンテーションのための新しい教師なし領域適応法を提案する。
潜在コンテンツ表現をドメイン間で混合するエンコーダ・デコーダの原理に基づいて,画像から画像への変換パラダイムを提案する。
都市間比較実験により,提案手法は最先端領域適応法より優れていることが示された。
論文 参考訳(メタデータ) (2022-12-07T18:16:17Z) - PiPa: Pixel- and Patch-wise Self-supervised Learning for Domain
Adaptative Semantic Segmentation [100.6343963798169]
教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、学習モデルの他のドメインへの一般化を強化することを目的としている。
そこで我々は,ドメイン適応型セマンティックセマンティックセグメンテーションのための,PiPaという,画素・パッチ対応の自己教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-14T18:31:24Z) - Diffusion-based Image Translation using Disentangled Style and Content
Representation [51.188396199083336]
セマンティックテキストや単一のターゲット画像でガイドされた拡散ベースの画像変換により、柔軟なスタイル変換が可能になった。
逆拡散中、画像の原内容を維持することはしばしば困難である。
本稿では,不整合スタイルとコンテンツ表現を用いた新しい拡散に基づく教師なし画像翻訳手法を提案する。
提案手法は,テキスト誘導と画像誘導の両方の翻訳作業において,最先端のベースラインモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-30T06:44:37Z) - Marginal Contrastive Correspondence for Guided Image Generation [58.0605433671196]
例題に基づく画像翻訳は、条件入力と2つの異なる領域からの例題間の密接な対応を確立する。
既存の作業は、2つのドメインにまたがる機能的距離を最小化することで、ドメイン間の通信を暗黙的に構築する。
本稿では,MCL-Net(Marginal Contrastive Learning Network)の設計を行った。
論文 参考訳(メタデータ) (2022-04-01T13:55:44Z) - VLAD-VSA: Cross-Domain Face Presentation Attack Detection with
Vocabulary Separation and Adaptation [87.9994254822078]
顔提示攻撃(PAD)の場合、スプーフィングキューのほとんどは微妙で局所的な画像パターンである。
VLADアグリゲーション法は,特徴空間を局所的に分割する視覚語彙を用いて局所特徴を定量化する。
提案する語彙分離法は,語彙をドメイン共有語とドメイン固有語に分割する。
論文 参考訳(メタデータ) (2022-02-21T15:27:41Z) - Semantic Consistency in Image-to-Image Translation for Unsupervised
Domain Adaptation [22.269565708490465]
Unsupervised Domain Adaptation (UDA)は、ソースドメインでトレーニングされたモデルを、ラベル付きデータが使用できない新しいターゲットドメインに適応させることを目的としている。
UDAの整合性正規化手法と組み合わせて意味論的に一貫した画像から画像への変換法を提案する。
論文 参考訳(メタデータ) (2021-11-05T14:22:20Z) - Affinity Space Adaptation for Semantic Segmentation Across Domains [57.31113934195595]
本稿では,意味的セグメンテーションにおける教師なしドメイン適応(UDA)の問題に対処する。
ソースドメインとターゲットドメインが不変なセマンティック構造を持つという事実に触発され、ドメイン間におけるそのような不変性を活用することを提案する。
親和性空間適応戦略として,親和性空間の洗浄と親和性空間アライメントという2つの方法を開発した。
論文 参考訳(メタデータ) (2020-09-26T10:28:11Z) - Label-Driven Reconstruction for Domain Adaptation in Semantic
Segmentation [43.09068177612067]
教師なしのドメイン適応は、セマンティックセグメンテーションにおけるピクセルワイズアノテーションの必要性を軽減することができる。
最も一般的な戦略の1つは、ソースドメインからターゲットドメインに画像を変換し、敵対学習を用いて特徴空間内の限界分布を調整することである。
本稿では、画像翻訳バイアスを緩和し、ドメイン間機能を同じカテゴリに整合させる革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-10T10:06:35Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
教師なしのドメイン適応アルゴリズムは、あるドメインから学んだ知識を別のドメインに転送することを目的としている。
本稿では,新しい画素単位の対向領域適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-09T19:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。