論文の概要: Inferring gender from name: a large scale performance evaluation study
- arxiv url: http://arxiv.org/abs/2308.12381v1
- Date: Tue, 22 Aug 2023 13:38:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 16:24:54.742440
- Title: Inferring gender from name: a large scale performance evaluation study
- Title(参考訳): 名前から性別を推測する:大規模パフォーマンス評価研究
- Authors: Kriste Krstovski, Yao Lu, Ye Xu
- Abstract要約: 研究者は、簡単に利用可能な情報から、主に人物の名前から性別を推測する必要がある。
名前と性別の推論は、アルゴリズムのアプローチとソフトウェア製品の領域を継続的に発展させてきた。
我々は,既存手法を大規模に評価し,名前と性別の推論を行う。
既存のどのアプローチよりも優れたパフォーマンスを実現する2つの新しいハイブリッドアプローチを提案する。
- 参考スコア(独自算出の注目度): 4.934579134540613
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A person's gender is a crucial piece of information when performing research
across a wide range of scientific disciplines, such as medicine, sociology,
political science, and economics, to name a few. However, in increasing
instances, especially given the proliferation of big data, gender information
is not readily available. In such cases researchers need to infer gender from
readily available information, primarily from persons' names. While inferring
gender from name may raise some ethical questions, the lack of viable
alternatives means that researchers have to resort to such approaches when the
goal justifies the means - in the majority of such studies the goal is to
examine patterns and determinants of gender disparities. The necessity of
name-to-gender inference has generated an ever-growing domain of algorithmic
approaches and software products. These approaches have been used throughout
the world in academia, industry, governmental and non-governmental
organizations. Nevertheless, the existing approaches have yet to be
systematically evaluated and compared, making it challenging to determine the
optimal approach for future research. In this work, we conducted a large scale
performance evaluation of existing approaches for name-to-gender inference.
Analysis are performed using a variety of large annotated datasets of names. We
further propose two new hybrid approaches that achieve better performance than
any single existing approach.
- Abstract(参考訳): 個人の性別は、医学、社会学、政治科学、経済学など、幅広い科学分野の研究を行う際に重要な情報である。
しかし、特にビッグデータの普及に伴い、増加している事例では、性別情報は容易には利用できない。
このような場合、研究者は、主に人の名前から、容易に入手できる情報から性別を推測する必要がある。
名前から性別を推測することは倫理的な問題を引き起こすかもしれないが、現実的な代替手段がないことは、研究者が手段を正当化する際にそのようなアプローチに頼る必要があることを意味している。
name-to-gender推論の必要性は、アルゴリズム的アプローチとソフトウェア製品がますます増え続けている領域を生み出している。
これらのアプローチは、学界、産業、政府、非政府組織で世界中で使われてきた。
それにもかかわらず、既存のアプローチは体系的に評価・比較されておらず、将来の研究に最適なアプローチを決定するのが困難である。
本研究では,既存手法を大規模に評価し,その性能評価を行った。
解析は様々な名前の注釈付きデータセットを使用して行われる。
さらに,既存のアプローチよりも優れたパフォーマンスを実現する2つのハイブリッドアプローチを提案する。
関連論文リスト
- The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
我々はトランスジェンダー、ノンバイナリ、その他のジェンダー・ディバースのアイデンティティを中心とし、アライメント手順が既存のジェンダー・ディバースバイアスとどのように相互作用するかを検討する。
以上の結果から,DPO対応モデルは特に教師付き微調整に敏感であることが示唆された。
DPOとより広範なアライメントプラクティスに合わせたレコメンデーションで締めくくります。
論文 参考訳(メタデータ) (2024-11-06T06:50:50Z) - GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
大規模言語モデル(LLM)は、自然言語生成において顕著な能力を示してきたが、社会的バイアスを増大させることも観察されている。
GenderCAREは、革新的な基準、バイアス評価、リダクションテクニック、評価メトリクスを含む包括的なフレームワークである。
論文 参考訳(メタデータ) (2024-08-22T15:35:46Z) - Unveiling Gender Bias in Terms of Profession Across LLMs: Analyzing and
Addressing Sociological Implications [0.0]
この研究は、AI言語モデルにおけるジェンダーバイアスに関する既存の研究を調査し、現在の知識のギャップを特定する。
この結果は,大規模言語モデルのアウトプットに存在する,ジェンダー付き単語関連,言語使用,偏見付き物語に光を当てた。
本稿では,アルゴリズムアプローチやデータ拡張手法など,LSMにおける性別バイアスを低減するための戦略を提案する。
論文 参考訳(メタデータ) (2023-07-18T11:38:45Z) - Much Ado About Gender: Current Practices and Future Recommendations for
Appropriate Gender-Aware Information Access [3.3903891679981593]
情報アクセス研究(と開発)は時にジェンダーを利用する。
この研究は、ジェンダーが何であるかの現在の理解と一致していないジェンダーについて様々な仮定を下している。
私たちがレビューするほとんどの論文は、性別が2つのカテゴリに分けることができないことを認めたとしても、性別のバイナリな概念に依存しています。
論文 参考訳(メタデータ) (2023-01-12T01:21:02Z) - Gender Bias in Big Data Analysis [0.0]
性別予測ソフトウェアツールが歴史的ビッグデータ研究で使用されるとき、性別バイアスを測定する。
性別バイアスは、よく認識されたDBLPデータセットにおいて、個人が特定したコンピュータサイエンスの著者と対比することによって測定される。
論文 参考訳(メタデータ) (2022-11-17T20:13:04Z) - Temporal Analysis and Gender Bias in Computing [0.0]
何十年にもわたって性別が変わる「レスリー問題」
この記事では、1925-1975年に測定可能な「ジェンダーシフト」を持つ300の与えられた名前を特定する。
この記事は、数十年前の女性の過多(および男性の過小評価)を招きかねない「女性シフト」が存在することを定量的に示している。
論文 参考訳(メタデータ) (2022-09-29T00:29:43Z) - Theories of "Gender" in NLP Bias Research [0.0]
NLPにおけるジェンダーバイアスに関する200近い記事を調査した。
記事の大多数は、性別に関する理論を明示していない。
多くの人は、トランス、ノンバイナリ、インターセックスの人々の存在と経験を無視した方法で、性の特徴、社会的性別、言語性について説明している。
論文 参考訳(メタデータ) (2022-05-05T09:20:53Z) - Are Commercial Face Detection Models as Biased as Academic Models? [64.71318433419636]
我々は学術的および商業的な顔検出システムを比較し、特にノイズに対する堅牢性について検討する。
現状の学術的顔検出モデルでは、ノイズの頑健性に人口格差があることがわかった。
私たちは、商用モデルは、常に学術モデルと同じくらいの偏り、あるいはより偏りがある、と結論付けます。
論文 参考訳(メタデータ) (2022-01-25T02:21:42Z) - They, Them, Theirs: Rewriting with Gender-Neutral English [56.14842450974887]
私たちは、英語でジェンダーインクルージョンを促進する一般的な方法である特異点についてケーススタディを行います。
本研究では, 人為的データを持たない1%の単語誤り率で, ジェンダーニュートラルな英語を学習できるモデルについて述べる。
論文 参考訳(メタデータ) (2021-02-12T21:47:48Z) - Gender Stereotype Reinforcement: Measuring the Gender Bias Conveyed by
Ranking Algorithms [68.85295025020942]
本稿では,性別ステレオタイプをサポートする検索エンジンの傾向を定量化するジェンダーステレオタイプ強化(GSR)尺度を提案する。
GSRは、表現上の害を定量化できる情報検索のための、最初の特別に調整された尺度である。
論文 参考訳(メタデータ) (2020-09-02T20:45:04Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。