論文の概要: Asymmetric Co-Training with Explainable Cell Graph Ensembling for
Histopathological Image Classification
- arxiv url: http://arxiv.org/abs/2308.12737v1
- Date: Thu, 24 Aug 2023 12:27:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 14:20:09.544236
- Title: Asymmetric Co-Training with Explainable Cell Graph Ensembling for
Histopathological Image Classification
- Title(参考訳): 病理組織像分類のための説明可能な細胞グラフを用いた非対称コトレーニング
- Authors: Ziqi Yang, Zhongyu Li, Chen Liu, Xiangde Luo, Xingguang Wang, Dou Xu,
Chaoqun Li, Xiaoying Qin, Meng Yang, Long Jin
- Abstract要約: 本稿では,深部グラフ畳み込みニューラルネットワークと畳み込みニューラルネットワークを組み合わせた非対称協調学習フレームワークを提案する。
セルグラフデータを扱う14層ディープグラフ畳み込みネットワークを構築した。
プライベートLUAD7Cおよびパブリック大腸癌データセットに対するアプローチについて検討した。
- 参考スコア(独自算出の注目度): 28.949527817202984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks excel in histopathological image
classification, yet their pixel-level focus hampers explainability. Conversely,
emerging graph convolutional networks spotlight cell-level features and medical
implications. However, limited by their shallowness and suboptimal use of
high-dimensional pixel data, GCNs underperform in multi-class histopathological
image classification. To make full use of pixel-level and cell-level features
dynamically, we propose an asymmetric co-training framework combining a deep
graph convolutional network and a convolutional neural network for multi-class
histopathological image classification. To improve the explainability of the
entire framework by embedding morphological and topological distribution of
cells, we build a 14-layer deep graph convolutional network to handle cell
graph data. For the further utilization and dynamic interactions between
pixel-level and cell-level information, we also design a co-training strategy
to integrate the two asymmetric branches. Notably, we collect a private
clinically acquired dataset termed LUAD7C, including seven subtypes of lung
adenocarcinoma, which is rare and more challenging. We evaluated our approach
on the private LUAD7C and public colorectal cancer datasets, showcasing its
superior performance, explainability, and generalizability in multi-class
histopathological image classification.
- Abstract(参考訳): 畳み込みニューラルネットワークは病理組織像の分類に優れているが、そのピクセルレベルの焦点は説明可能性を妨げる。
逆に、新興のグラフ畳み込みネットワークは、細胞レベルの特徴と医学的意味を浮き彫りにしている。
しかし、その浅さと高次元画素データの最適利用により、GCNは多種類の病理組織像分類において劣る。
本稿では,画素レベルとセルレベルの機能を動的に活用するために,ディープグラフ畳み込みネットワークと畳み込みニューラルネットワークを組み合わせた非対称協調学習フレームワークを提案する。
細胞の形態的およびトポロジカルな分布を埋め込むことで、フレームワーク全体の説明性を向上させるため、14層深層グラフ畳み込みネットワークを構築し、細胞グラフデータを処理する。
画素レベルとセルレベルの情報間のさらなる利用と動的相互作用のために、我々は2つの非対称分岐を統合するための協調学習戦略を設計する。
特に,肺腺癌の7種類の亜型を含む,LUAD7Cというプライベートな臨床的に取得したデータセットを収集した。
われわれはLUAD7Cおよび大腸癌のプライベートデータセットに対するアプローチについて検討し,その優れた性能,説明可能性,多クラス画像分類における一般化性について検討した。
関連論文リスト
- Mew: Multiplexed Immunofluorescence Image Analysis through an Efficient Multiplex Network [84.88767228835928]
マルチプレックスネットワークのレンズを通してmIF画像を効率的に処理する新しいフレームワークであるMewを紹介する。
Mew は、幾何学情報のための Voronoi ネットワークと、セルワイドの均一性を捉えるセル型ネットワークという、2つの異なる層からなる多重ネットワークを革新的に構築する。
このフレームワークは、トレーニング中にグラフ全体を処理できるスケーラブルで効率的なグラフニューラルネットワーク(GNN)を備えている。
論文 参考訳(メタデータ) (2024-07-25T08:22:30Z) - A novel approach for glaucoma classification by wavelet neural networks
using graph-based, statisitcal features of qualitatively improved images [0.0]
我々は、最適な拡張網膜画像特徴にウェーブレットニューラルネットワーク(WNN)を用いた新しい緑内障分類手法を提案する。
WNN分類器の性能は、様々なデータセットを持つ多層パーセプトロンニューラルネットワークと比較される。
論文 参考訳(メタデータ) (2022-06-24T06:19:30Z) - How GNNs Facilitate CNNs in Mining Geometric Information from
Large-Scale Medical Images [2.2699159408903484]
畳み込みニューラルネットワーク(CNN)が捉えたグローバルな画像レベルの表現を強化するための融合フレームワークを提案する。
大腸癌と胃癌の大規模なコホートから得られた組織学的データセットの融合戦略について検討した。
論文 参考訳(メタデータ) (2022-06-15T15:27:48Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Neuroplastic graph attention networks for nuclei segmentation in
histopathology images [17.30043617044508]
細胞核のセマンティックセグメンテーションのための新しいアーキテクチャを提案する。
このアーキテクチャは、新しい神経可塑性グラフアテンションネットワークで構成されている。
実験的な評価では、我々のフレームワークは最先端のニューラルネットワークのアンサンブルよりも優れています。
論文 参考訳(メタデータ) (2022-01-10T22:19:14Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Automatic Semantic Segmentation of the Lumbar Spine. Clinical
Applicability in a Multi-parametric and Multi-centre MRI study [0.0]
この文書は、最も正確なセグメンテーションを得たニューラルネットワークの設計結果について記述し、分析する。
提案するいくつかの設計は、ベースラインとして使用される標準のU-Netよりも優れており、特に複数のニューラルネットワークの出力が異なる戦略に従って結合されるアンサンブルで使用される場合である。
論文 参考訳(メタデータ) (2021-11-16T17:33:05Z) - Cells are Actors: Social Network Analysis with Classical ML for SOTA
Histology Image Classification [1.4806818833792859]
本稿では,組織マイクロ環境の複雑な構造を記述するために,統計ネットワーク解析手法を提案する。
ネットワーク内の細胞間の相互作用のみを解析することにより、CRAグレーディングのための高度に識別可能な統計的特徴を抽出できることが示される。
我々は,広帯域CRCヒストロジー画像データセット上にセルネットワークを作成し,提案手法を実験し,三クラスCRAグレーディングの予測のための最先端性能を報告した。
論文 参考訳(メタデータ) (2021-06-29T12:22:10Z) - Hierarchical Graph Capsule Network [78.4325268572233]
ノード埋め込みを共同で学習し,グラフ階層を抽出できる階層型グラフカプセルネットワーク(HGCN)を提案する。
階層的表現を学ぶために、HGCNは下層カプセル(部分)と高層カプセル(全体)の間の部分的関係を特徴付ける。
論文 参考訳(メタデータ) (2020-12-16T04:13:26Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Neural Cellular Automata Manifold [84.08170531451006]
ニューラルセルラーオートマタのニューラルネットワークアーキテクチャは、より大きなNNにカプセル化可能であることを示す。
これにより、NAAの多様体を符号化する新しいモデルを提案し、それぞれが異なる画像を生成することができる。
生物学的には、我々のアプローチは転写因子の役割を担い、細胞の分化を促進する特定のタンパク質への遺伝子マッピングを調節する。
論文 参考訳(メタデータ) (2020-06-22T11:41:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。