Prediction without Preclusion: Recourse Verification with Reachable Sets
- URL: http://arxiv.org/abs/2308.12820v2
- Date: Wed, 1 May 2024 16:43:58 GMT
- Title: Prediction without Preclusion: Recourse Verification with Reachable Sets
- Authors: Avni Kothari, Bogdan Kulynych, Tsui-Wei Weng, Berk Ustun,
- Abstract summary: We introduce a procedure called recourse verification to test if a model assigns fixed predictions to its decision subjects.
We conduct a comprehensive empirical study on the infeasibility of recourse on datasets from consumer finance.
- Score: 16.705988489763868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models are often used to decide who receives a loan, a job interview, or a public benefit. Models in such settings use features without considering their actionability. As a result, they can assign predictions that are fixed $-$ meaning that individuals who are denied loans and interviews are, in fact, precluded from access to credit and employment. In this work, we introduce a procedure called recourse verification to test if a model assigns fixed predictions to its decision subjects. We propose a model-agnostic approach for recourse verification with reachable sets $-$ i.e., the set of all points that a person can reach through their actions in feature space. We develop methods to construct reachable sets for discrete feature spaces, which can certify the responsiveness of any model by simply querying its predictions. We conduct a comprehensive empirical study on the infeasibility of recourse on datasets from consumer finance. Our results highlight how models can inadvertently preclude access by assigning fixed predictions and underscore the need to account for actionability in model development.
Related papers
- Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse [7.730963708373791]
Consumer protection rules mandate that we provide a list of "principal reasons" to consumers who receive adverse decisions.
In practice, lenders and employers identify principal reasons by returning the top-scoring features from a feature attribution method.
We show that standard attribution methods can mislead individuals by highlighting reasons without recourse.
We propose to address these issues by scoring features on the basis of responsiveness.
arXiv Detail & Related papers (2024-10-29T23:37:49Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task where a model needs to be adapted to a new domain without access to target domain labels or source domain data.
This paper proposes a novel approach that considers multiple prediction hypotheses for each sample and investigates the rationale behind each hypothesis.
To achieve the optimal performance, we propose a three-step adaptation process: model pre-adaptation, hypothesis consolidation, and semi-supervised learning.
arXiv Detail & Related papers (2024-02-02T05:53:22Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - Specifying and Testing $k$-Safety Properties for Machine-Learning Models [20.24045879238586]
We take inspiration from specifications used in formal methods, expressing $k$ different executions, so-called $k$-safety properties.
Here, we show the wide applicability of $k$-safety properties for machine-learning models and present the first specification language for expressing them.
Our framework is effective in identifying property violations, and that detected bugs could be used to train better models.
arXiv Detail & Related papers (2022-06-13T11:35:55Z) - Increasing the Cost of Model Extraction with Calibrated Proof of Work [25.096196576476885]
In model extraction attacks, adversaries can steal a machine learning model exposed via a public API.
We propose requiring users to complete a proof-of-work before they can read the model's predictions.
arXiv Detail & Related papers (2022-01-23T12:21:28Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Better sampling in explanation methods can prevent dieselgate-like
deception [0.0]
Interpretability of prediction models is necessary to determine their biases and causes of errors.
Popular techniques, such as IME, LIME, and SHAP, use perturbation of instance features to explain individual predictions.
We show that the improved sampling increases the robustness of the LIME and SHAP, while previously untested method IME is already the most robust of all.
arXiv Detail & Related papers (2021-01-26T13:41:37Z) - Beyond Individualized Recourse: Interpretable and Interactive Summaries
of Actionable Recourses [14.626432428431594]
We propose a novel model framework called Actionable Recourse agnostic (AReS) to construct global counterfactual explanations.
We formulate a novel objective which simultaneously optimize for correctness of the recourses and interpretability of the explanations.
Our framework can provide decision makers with a comprehensive overview of recourses corresponding to any black box model.
arXiv Detail & Related papers (2020-09-15T15:14:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.