論文の概要: Short Run Transit Route Planning Decision Support System Using a Deep
Learning-Based Weighted Graph
- arxiv url: http://arxiv.org/abs/2308.12828v1
- Date: Thu, 24 Aug 2023 14:37:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 13:45:56.868163
- Title: Short Run Transit Route Planning Decision Support System Using a Deep
Learning-Based Weighted Graph
- Title(参考訳): 深層学習に基づく重み付きグラフを用いた短絡経路計画決定支援システム
- Authors: Nadav Shalit, Michael Fire, Dima Kagan, Eran Ben-Elia
- Abstract要約: 本稿では,公共交通機関の計画立案者が短期間の経路改善を迅速に特定できるような,意思決定支援システムのための新しいディープラーニング手法を提案する。
本手法は,日中の2つの停留所間の経路をシームレスに調整することにより,時間を短縮し,PTサービスを増強する。
本研究では,道路セグメントの遅延値を予測するためのディープラーニングモデルを訓練し,これらの遅延値を輸送グラフのエッジ重みとして利用することにより,効率的な経路探索を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Public transport routing plays a crucial role in transit network design,
ensuring a satisfactory level of service for passengers. However, current
routing solutions rely on traditional operational research heuristics, which
can be time-consuming to implement and lack the ability to provide quick
solutions. Here, we propose a novel deep learning-based methodology for a
decision support system that enables public transport (PT) planners to identify
short-term route improvements rapidly. By seamlessly adjusting specific
sections of routes between two stops during specific times of the day, our
method effectively reduces times and enhances PT services. Leveraging diverse
data sources such as GTFS and smart card data, we extract features and model
the transportation network as a directed graph. Using self-supervision, we
train a deep learning model for predicting lateness values for road segments.
These lateness values are then utilized as edge weights in the transportation
graph, enabling efficient path searching. Through evaluating the method on Tel
Aviv, we are able to reduce times on more than 9\% of the routes. The improved
routes included both intraurban and suburban routes showcasing a fact
highlighting the model's versatility. The findings emphasize the potential of
our data-driven decision support system to enhance public transport and city
logistics, promoting greater efficiency and reliability in PT services.
- Abstract(参考訳): 公共交通ルートは交通網設計において重要な役割を担っており、乗客のサービス水準が十分に確保されている。
しかし、現在のルーティングソリューションは従来の運用研究のヒューリスティックに依存しており、実装に時間がかかり、迅速なソリューションを提供する能力が欠如している。
本稿では,ptプランナーが短期的経路改善を迅速に特定できるようにする意思決定支援システムのための,新しい深層学習に基づく手法を提案する。
本手法は,日中の2つの停留所間の経路をシームレスに調整することにより,時間を短縮し,PTサービスを増強する。
GTFSやスマートカードデータといった多様なデータソースを活用して、特徴を抽出し、トランスポートネットワークを有向グラフとしてモデル化する。
自己スーパービジョンを用いて,道路セグメントの遅延値予測のためのディープラーニングモデルをトレーニングする。
これらの遅延値は輸送グラフのエッジウェイトとして利用され、効率的な経路探索を可能にする。
テルアビブの手法を評価することで、経路の9\%以上の時間を短縮できる。
改良された路線には都市内と郊外の両方の路線があり、モデルの汎用性が強調された。
この結果は,公共交通機関と都市ロジスティクスを強化し,PTサービスの効率と信頼性を高めるデータ駆動型意思決定支援システムの可能性を強調した。
関連論文リスト
- Rethinking Optimal Transport in Offline Reinforcement Learning [64.56896902186126]
オフラインの強化学習では、データはさまざまな専門家によって提供され、一部は準最適である。
効率的なポリシを抽出するには、データセットから最高の振る舞いを強調する必要がある。
本稿では,各状態に対する最善の専門家行動の公平な分布に状態をマッピングするポリシーを見つけることを目的としたアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-17T22:36:43Z) - A Predictive and Optimization Approach for Enhanced Urban Mobility Using Spatiotemporal Data [0.0]
本研究では,機械学習アルゴリズムと実交通情報を組み合わせた都市移動性向上手法を提案する。
ニューヨーク市の黄色いタクシー旅行のデータを用いて,旅行時間と渋滞解析の予測モデルを構築した。
本研究は、高度データ駆動方式による都市渋滞の低減と交通効率の向上を目的とした継続的な取り組みに寄与する。
論文 参考訳(メタデータ) (2024-10-07T16:16:49Z) - A sequential transit network design algorithm with optimal learning
under correlated beliefs [4.8951183832371]
本研究では, 逐次的トランジットネットワーク設計と最適学習を組み合わせた人工知能駆動型アルゴリズムを提案する。
オペレータは、設計されたルートと実際の旅行需要との整合性からリスクを回避するために、徐々に経路システムを拡大する。
バリデーションのために、ニューヨーク市の公共利用マイクロデータエリアに基づく人工ネットワーク上に、新しいルートシステムを設計する。
論文 参考訳(メタデータ) (2023-05-16T14:14:51Z) - Multitask Weakly Supervised Learning for Origin Destination Travel Time
Estimation [8.531695291898815]
本論文は,道路網とOD旅行時間とを組み合わせて推定し始める。
現在の経路の共発生確率を最大化する新たな経路回復関数が提案されている。
我々は、Xi'anとChengduで、幅広い現実世界のタクシーのデータセットの実験を行っている。
論文 参考訳(メタデータ) (2023-01-13T00:11:56Z) - On the Role of Multi-Objective Optimization to the Transit Network
Design Problem [0.7734726150561088]
この研究は、トランジットネットワーク設計問題(TNDP)により良い回答をするために、単目的と多目的のスタンスを相乗的に組み合わせることができることを示している。
ポルトガルのリスボン市におけるマルチモーダル公共交通ネットワークにおいて,本手法を適用した。
提案されたTNDP最適化は、目標関数を最大28.3%削減することで、結果を改善することを実証した。
論文 参考訳(メタデータ) (2022-01-27T16:22:07Z) - Deep Reinforcement Learning Aided Packet-Routing For Aeronautical Ad-Hoc
Networks Formed by Passenger Planes [99.54065757867554]
エンド・ツー・エンド(E2E)遅延の最小化を目的としたAANETにおけるルーティングのための深層強化学習を起動する。
最深Qネットワーク(DQN)は、転送ノードで観測される最適ルーティング決定と局所的な地理的情報との関係をキャプチャする。
フィードバック機構を組み込んだディープバリューネットワーク(DVN)を用いて,システムのダイナミクスに関する知識をさらに活用する。
論文 参考訳(メタデータ) (2021-10-28T14:18:56Z) - Deep Learning Aided Packet Routing in Aeronautical Ad-Hoc Networks
Relying on Real Flight Data: From Single-Objective to Near-Pareto
Multi-Objective Optimization [79.96177511319713]
航空アドホックネットワーク(AANET)のルーティングを支援するために、ディープラーニング(DL)を起動する。
フォワードノードによって観測された局所的な地理的情報を最適な次のホップを決定するために必要な情報にマッピングするために、ディープニューラルネットワーク(DNN)が考案される。
DL支援ルーティングアルゴリズムを多目的シナリオに拡張し,遅延を最小化し,経路容量を最大化し,経路寿命を最大化する。
論文 参考訳(メタデータ) (2021-10-28T14:18:22Z) - A Deep Value-network Based Approach for Multi-Driver Order Dispatching [55.36656442934531]
そこで本研究では,注文発送のための深層強化学習に基づくソリューションを提案する。
DiDiの配車プラットフォーム上で大規模なオンラインA/Bテストを実施している。
その結果,CVNetは近年提案されているディスパッチ手法よりも一貫して優れていた。
論文 参考訳(メタデータ) (2021-06-08T16:27:04Z) - Traffic Flow Estimation using LTE Radio Frequency Counters and Machine
Learning [0.0]
本稿では,LTE/4G無線周波数性能測定カウンタを用いた新しいトラフィックフロー推定手法を提案する。
我々のアプローチは、時間だけでなく空間においてもソリューションを一般化するためにトランスファーラーニングを適用することの利点が示される。
論文 参考訳(メタデータ) (2021-01-22T15:05:10Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。