Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution
- URL: http://arxiv.org/abs/2308.12864v2
- Date: Sat, 17 Aug 2024 15:43:04 GMT
- Title: Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution
- Authors: Sarah Perez, Philippe Poncet,
- Abstract summary: We present a novel data assimilation strategy in pore-scale imaging.
We demonstrate that this makes it possible to robustly address reactive inverse problems incorporating Uncertainty Quantification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive inverse problems incorporating Uncertainty Quantification (UQ). Pore-scale modeling of reactive flow offers a valuable opportunity to investigate the evolution of macro-scale properties subject to dynamic processes. Yet, they suffer from imaging limitations arising from the associated X-ray microtomography (X-ray microCT) process, which induces discrepancies in the properties estimates. Assessment of the kinetic parameters also raises challenges, as reactive coefficients are critical parameters that can cover a wide range of values. We account for these two issues and ensure reliable calibration of pore-scale modeling, based on dynamical microCT images, by integrating uncertainty quantification in the workflow. The present method is based on a multitasking formulation of reactive inverse problems combining data-driven and physics-informed techniques in calcite dissolution. This allows quantifying morphological uncertainties on the porosity field and estimating reactive parameter ranges through prescribed PDE models with a latent concentration field and dynamical microCT. The data assimilation strategy relies on sequential reinforcement incorporating successively additional PDE constraints. We guarantee robust and unbiased uncertainty quantification by straightforward adaptive weighting of Bayesian Physics-Informed Neural Networks (BPINNs), ensuring reliable micro-porosity changes during geochemical transformations. We demonstrate successful Bayesian Inference in 1D+Time and 2D+Time calcite dissolution based on synthetic microCT images with meaningful posterior distribution on the reactive parameters and dimensionless numbers.
Related papers
- Machine learning-enabled velocity model building with uncertainty quantification [0.41942958779358674]
Accurately characterizing migration velocity models is crucial for a wide range of geophysical applications.
Traditional velocity model building methods are powerful but often struggle with the inherent complexities of the inverse problem.
We propose a scalable methodology that integrates generative modeling, in the form of Diffusion networks, with physics-informed summary statistics.
arXiv Detail & Related papers (2024-11-11T01:36:48Z) - Shedding Light on Large Generative Networks: Estimating Epistemic Uncertainty in Diffusion Models [15.352556466952477]
Generative diffusion models are notable for their large parameter count (exceeding 100 million) and operation within high-dimensional image spaces.
We introduce an innovative framework, Diffusion Ensembles for Capturing Uncertainty (DECU), designed for estimating epistemic uncertainty for diffusion models.
arXiv Detail & Related papers (2024-06-05T14:03:21Z) - Dynamical Hyperspectral Unmixing with Variational Recurrent Neural
Networks [25.051918587650636]
Multitemporal hyperspectral unmixing (MTHU) is a fundamental tool in the analysis of hyperspectral image sequences.
We propose an unsupervised MTHU algorithm based on variational recurrent neural networks.
arXiv Detail & Related papers (2023-03-19T04:51:34Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Moment evolution equations and moment matching for stochastic image
EPDiff [68.97335984455059]
Models of image deformation allow study of time-continuous effects transforming images by deforming the image domain.
Applications include medical image analysis with both population trends and random subject specific variation.
We use moment approximations of the corresponding Ito diffusion to construct estimators for statistical inference in the parameters full model.
arXiv Detail & Related papers (2021-10-07T11:08:11Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
We introduce a Bayesian variational framework to quantify the model-immanent (epistemic) uncertainty.
We demonstrate that our approach yields competitive results for undersampled MRI reconstruction.
arXiv Detail & Related papers (2021-02-12T18:08:14Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Kinetics-Informed Neural Networks [0.0]
We use feed-forward artificial neural networks as basis functions for the construction of surrogate models to solve ordinary differential equations.
We show that the simultaneous training of neural nets and kinetic model parameters in a regularized multiobjective optimization setting leads to the solution of the inverse problem.
This surrogate approach to inverse kinetic ODEs can assist in the elucidation of reaction mechanisms based on transient data.
arXiv Detail & Related papers (2020-11-30T00:07:09Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
This study introduces physics-informed neural networks (PINNs) as a means to perform myocardial perfusion MR quantification.
PINNs can be trained to fit the observed perfusion MR data while respecting the underlying physical conservation laws.
arXiv Detail & Related papers (2020-11-25T16:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.