CNN-powered micro- to macro-scale flow modeling in deformable porous media
- URL: http://arxiv.org/abs/2501.06466v1
- Date: Sat, 11 Jan 2025 07:36:41 GMT
- Title: CNN-powered micro- to macro-scale flow modeling in deformable porous media
- Authors: Yousef Heider, Fadi Aldakheel, Wolfgang Ehlers,
- Abstract summary: This work introduces a novel application for predicting the macroscopic intrinsic permeability tensor in deformable porous media, using a limited set of micro-CT images of real microgeometries.
The novelty of this work lies in leveraging Convolutional Neural Networks (CNN) to predict pore-fluid flow behavior under deformation and anisotropic flow conditions.
- Score: 0.0
- License:
- Abstract: This work introduces a novel application for predicting the macroscopic intrinsic permeability tensor in deformable porous media, using a limited set of micro-CT images of real microgeometries. The primary goal is to develop an efficient, machine-learning (ML)-based method that overcomes the limitations of traditional permeability estimation techniques, which often rely on time-consuming experiments or computationally expensive fluid dynamics simulations. The novelty of this work lies in leveraging Convolutional Neural Networks (CNN) to predict pore-fluid flow behavior under deformation and anisotropic flow conditions. Particularly, the described approach employs binarized CT images of porous micro-structure as inputs to predict the symmetric second-order permeability tensor, a critical parameter in continuum porous media flow modeling. The methodology comprises four key steps: (1) constructing a dataset of CT images from Bentheim sandstone at different volumetric strain levels; (2) performing pore-scale simulations of single-phase flow using the lattice Boltzmann method (LBM) to generate permeability data; (3) training the CNN model with the processed CT images as inputs and permeability tensors as outputs; and (4) exploring techniques to improve model generalization, including data augmentation and alternative CNN architectures. Examples are provided to demonstrate the CNN's capability to accurately predict the permeability tensor, a crucial parameter in various disciplines such as geotechnical engineering, hydrology, and material science. An exemplary source code is made available for interested readers.
Related papers
- Learning Pore-scale Multi-phase Flow from Experimental Data with Graph Neural Network [2.2101344151283944]
Current numerical models are often incapable of accurately capturing the complex pore-scale physics observed in experiments.
We propose a graph neural network-based approach and directly learn pore-scale fluid flow using micro-CT experimental data.
arXiv Detail & Related papers (2024-11-21T15:01:17Z) - Predicting Wall Thickness Changes in Cold Forging Processes: An Integrated FEM and Neural Network approach [2.7763199324745966]
We first provide a thorough analysis of nosing processes and the influencing parameters.
We then set-up a Finite Element Method simulation to better analyse the effects of varying process parameters.
We present a novel modeling framework based on specifically designed graph neural networks as surrogate models.
arXiv Detail & Related papers (2024-11-20T14:42:53Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - Vision-Informed Flow Image Super-Resolution with Quaternion Spatial
Modeling and Dynamic Flow Convolution [49.45309818782329]
Flow image super-resolution (FISR) aims at recovering high-resolution turbulent velocity fields from low-resolution flow images.
Existing FISR methods mainly process the flow images in natural image patterns.
We propose the first flow visual property-informed FISR algorithm.
arXiv Detail & Related papers (2024-01-29T06:48:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A microstructure estimation Transformer inspired by sparse
representation for diffusion MRI [11.761543033212797]
We present a learning-based framework based on Transformer for dMRI-based microstructure estimation with downsampled q-space data.
The proposed method achieved up to 11.25 folds of acceleration in scan time and outperformed the other state-of-the-art learning-based methods.
arXiv Detail & Related papers (2022-05-13T05:14:22Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
We present a data-driven correlation to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios.
A material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve leaflet.
The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material properties learned implicitly from the data and naturally embedded in the network parameters.
arXiv Detail & Related papers (2022-04-01T04:56:41Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
This paper presents a novel methodology for permeability prediction from micro-CT scans of geological rock samples.
The training data set for CNNs dedicated to permeability prediction consists of permeability labels that are typically generated by classical lattice Boltzmann methods (LBM)
We instead perform direct numerical simulation (DNS) by solving the stationary Stokes equation in an efficient and distributed-parallel manner.
arXiv Detail & Related papers (2021-09-04T08:43:19Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) is a new class of generative models within the family of continuous normalizing flows (CNF)
MF does not require invoking or backpropagating through an ODE solver during training.
We demonstrate for the first time the use of flow models for sampling from general curved surfaces.
arXiv Detail & Related papers (2021-08-18T09:00:24Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.