Realistic Unsupervised CLIP Fine-tuning with Universal Entropy Optimization
- URL: http://arxiv.org/abs/2308.12919v2
- Date: Thu, 18 Jul 2024 09:14:13 GMT
- Title: Realistic Unsupervised CLIP Fine-tuning with Universal Entropy Optimization
- Authors: Jian Liang, Lijun Sheng, Zhengbo Wang, Ran He, Tieniu Tan,
- Abstract summary: This paper explores a realistic unsupervised fine-tuning scenario, considering the presence of out-of-distribution samples from unknown classes.
In particular, we focus on simultaneously enhancing out-of-distribution detection and the recognition of instances associated with known classes.
We present a simple, efficient, and effective approach called Universal Entropy Optimization (UEO)
- Score: 101.08992036691673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of vision-language models, such as CLIP, has spurred a significant research effort towards their application for downstream supervised learning tasks. Although some previous studies have explored the unsupervised fine-tuning of CLIP, they often rely on prior knowledge in the form of class names associated with ground truth labels. This paper explores a realistic unsupervised fine-tuning scenario, considering the presence of out-of-distribution samples from unknown classes within the unlabeled data. In particular, we focus on simultaneously enhancing out-of-distribution detection and the recognition of instances associated with known classes. To tackle this problem, we present a simple, efficient, and effective approach called Universal Entropy Optimization (UEO). UEO leverages sample-level confidence to approximately minimize the conditional entropy of confident instances and maximize the marginal entropy of less confident instances. Apart from optimizing the textual prompt, UEO incorporates optimization of channel-wise affine transformations within the visual branch of CLIP. Extensive experiments across 15 domains and 4 different types of prior knowledge validate the effectiveness of UEO compared to baseline methods. The code is publicly available at \url{https://github.com/tim-learn/UEO}.
Related papers
- Density Distribution-based Learning Framework for Addressing Online
Continual Learning Challenges [4.715630709185073]
We introduce a density distribution-based learning framework for online Continual Learning.
Our framework achieves superior average accuracy and time-space efficiency.
Our method outperforms popular CL approaches by a significant margin.
arXiv Detail & Related papers (2023-11-22T09:21:28Z) - CLIP-VG: Self-paced Curriculum Adapting of CLIP for Visual Grounding [91.97362831507434]
Unsupervised visual grounding has been developed to locate regions using pseudo-labels.
We propose CLIP-VG, a novel method that can conduct self-paced curriculum adapting of CLIP with pseudo-language labels.
Our method outperforms the current state-of-the-art unsupervised method by a significant margin on RefCOCO/+/g datasets.
arXiv Detail & Related papers (2023-05-15T14:42:02Z) - Active Learning in the Predict-then-Optimize Framework: A Margin-Based
Approach [5.371816551086118]
We develop a learning method that sequentially decides whether to request the "labels" of feature samples from an unlabeled data stream.
Our active learning method is the first to be directly informed by the decision error induced by the predicted parameters.
arXiv Detail & Related papers (2023-05-11T05:44:36Z) - M-Tuning: Prompt Tuning with Mitigated Label Bias in Open-Set Scenarios [103.6153593636399]
We propose a vision-language prompt tuning method with mitigated label bias (M-Tuning)
It introduces open words from the WordNet to extend the range of words forming the prompt texts from only closed-set label words to more, and thus prompts are tuned in a simulated open-set scenario.
Our method achieves the best performance on datasets with various scales, and extensive ablation studies also validate its effectiveness.
arXiv Detail & Related papers (2023-03-09T09:05:47Z) - Streaming LifeLong Learning With Any-Time Inference [36.3326483579511]
We propose a novel lifelong learning approach, which is streaming, i.e., a single input sample arrives in each time step, single pass, class-incremental, and subject to be evaluated at any moment.
We additionally propose an implicit regularizer in the form of snap-shot self-distillation, which effectively minimizes the forgetting further.
Our empirical evaluations and ablations demonstrate that the proposed method outperforms the prior works by large margins.
arXiv Detail & Related papers (2023-01-27T18:09:19Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label.
Most existing methods elaborately designed as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data.
This paper proposes a novel framework of classifier with flexibility on the model and optimization algorithm.
arXiv Detail & Related papers (2020-02-19T08:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.