論文の概要: Perspective-aware Convolution for Monocular 3D Object Detection
- arxiv url: http://arxiv.org/abs/2308.12938v1
- Date: Thu, 24 Aug 2023 17:25:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 13:06:05.406212
- Title: Perspective-aware Convolution for Monocular 3D Object Detection
- Title(参考訳): 単眼3次元物体検出のための視点認識畳み込み
- Authors: Jia-Quan Yu, Soo-Chang Pei
- Abstract要約: 画像の長距離依存性をキャプチャする新しい視点対応畳み込み層を提案する。
画像画素ごとの深度軸に沿った特徴を抽出するために畳み込みカーネルを強制することにより、パースペクティブ情報をネットワークアーキテクチャに組み込む。
我々は、KITTI3Dデータセットの性能向上を実証し、簡単なベンチマークで平均23.9%の精度を達成した。
- 参考スコア(独自算出の注目度): 2.33877878310217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monocular 3D object detection is a crucial and challenging task for
autonomous driving vehicle, while it uses only a single camera image to infer
3D objects in the scene. To address the difficulty of predicting depth using
only pictorial clue, we propose a novel perspective-aware convolutional layer
that captures long-range dependencies in images. By enforcing convolutional
kernels to extract features along the depth axis of every image pixel, we
incorporates perspective information into network architecture. We integrate
our perspective-aware convolutional layer into a 3D object detector and
demonstrate improved performance on the KITTI3D dataset, achieving a 23.9\%
average precision in the easy benchmark. These results underscore the
importance of modeling scene clues for accurate depth inference and highlight
the benefits of incorporating scene structure in network design. Our
perspective-aware convolutional layer has the potential to enhance object
detection accuracy by providing more precise and context-aware feature
extraction.
- Abstract(参考訳): モノクロ3Dオブジェクト検出は、自動運転車にとって重要かつ困難な課題であり、シーン内の3Dオブジェクトを推測するためには、単一のカメライメージのみを使用する。
画像情報のみを用いた深度予測の難しさに対処するために,画像の長距離依存性をキャプチャする新しい視点対応畳み込み層を提案する。
画像画素ごとの深度軸に沿った特徴を抽出するために畳み込みカーネルを強制することにより、パースペクティブ情報をネットワークアーキテクチャに組み込む。
私たちは3dオブジェクト検出器にパースペクティブアウェア畳み込み層を統合し、kitti3dデータセットのパフォーマンス向上を実証し、簡単なベンチマークで平均23.9\%の精度を実現しました。
これらの結果は、正確な深度推定のためのシーンヒントのモデル化の重要性を強調し、ネットワーク設計にシーン構造を組み込むことの利点を強調している。
我々の視点対応畳み込み層は、より正確でコンテキスト対応な特徴抽出を提供することで、オブジェクト検出精度を高めることができる。
関連論文リスト
- OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection [102.0744303467713]
OPENと呼ばれる新しい多視点3Dオブジェクト検出器を提案する。
我々の主目的は、提案したオブジェクト指向位置埋め込みを通して、オブジェクトワイド情報をネットワークに効果的に注入することである。
OPENは、nuScenesテストベンチマークで64.4%のNDSと56.7%のmAPで、最先端の新たなパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-07-15T14:29:15Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTectionは、単一の画像から3Dオブジェクトを検出する最先端の方法である。
拡散モデルを微調整し、単一の画像に条件付けされた新しいビュー合成を行う。
さらに、検出監視により、ターゲットデータ上でモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-07T23:46:41Z) - MoGDE: Boosting Mobile Monocular 3D Object Detection with Ground Depth
Estimation [20.697822444708237]
画像の基底深度を常に推定する新しいMono3DフレームワークであるMoGDEを提案する。
MoGDEは最先端の手法と比較して大きなマージンで最高の性能を示し、KITTI 3Dベンチマークで第1位にランクされている。
論文 参考訳(メタデータ) (2023-03-23T04:06:01Z) - MonoPGC: Monocular 3D Object Detection with Pixel Geometry Contexts [6.639648061168067]
我々は、リッチなPixel Geometry Contextsを備えた新しいエンドツーエンドのモノクロ3Dオブジェクト検出フレームワークであるMonoPGCを提案する。
我々は,局所的および大域的な深度幾何学的知識を視覚的特徴に注入するために,画素深度推定を補助タスクとして導入し,設計深度クロスアテンションピラミッドモジュール(DCPM)を設計する。
さらに,3次元空間位置と奥行き認識機能を効率よく統合するDSATを提案する。
論文 参考訳(メタデータ) (2023-02-21T09:21:58Z) - Surface-biased Multi-Level Context 3D Object Detection [1.9723551683930771]
本研究は,高効率表面偏光特性抽出法(wang2022rbgnet)を用いて3次元点雲中の物体検出タスクに対処する。
本稿では,オブジェクト候補の正確な特徴表現を抽出し,点パッチやオブジェクト候補,グローバルシーンにおける自己注意を活用する3Dオブジェクト検出手法を提案する。
論文 参考訳(メタデータ) (2023-02-13T11:50:04Z) - OA-BEV: Bringing Object Awareness to Bird's-Eye-View Representation for
Multi-Camera 3D Object Detection [78.38062015443195]
OA-BEVは、BEVベースの3Dオブジェクト検出フレームワークにプラグインできるネットワークである。
提案手法は,BEV ベースラインに対する平均精度と nuScenes 検出スコアの両面で一貫した改善を実現する。
論文 参考訳(メタデータ) (2023-01-13T06:02:31Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - MDS-Net: A Multi-scale Depth Stratification Based Monocular 3D Object
Detection Algorithm [4.958840734249869]
本論文では,マルチスケール深度層構造に基づく1段モノクロ3次元物体検出アルゴリズムを提案する。
KITTIベンチマークの実験では、MDS-Netは既存のモノクル3D検出方法よりも3D検出やBEV検出タスクに優れていた。
論文 参考訳(メタデータ) (2022-01-12T07:11:18Z) - Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images
with Virtual Depth [64.29043589521308]
仮想深度で画像を合成することでトレーニングデータを増強するレンダリングモジュールを提案する。
レンダリングモジュールは、RGB画像と対応するスパース深度画像とを入力として、さまざまなフォトリアリスティック合成画像を出力する。
さらに,深度推定タスクを通じて共同で最適化することで,検出モデルを改善する補助モジュールを導入する。
論文 参考訳(メタデータ) (2021-07-28T11:00:47Z) - VR3Dense: Voxel Representation Learning for 3D Object Detection and
Monocular Dense Depth Reconstruction [0.951828574518325]
3次元物体検出と単眼深層再構成ニューラルネットワークを共同トレーニングする方法を紹介します。
推論中に入力、LiDARポイントクラウド、単一のRGBイメージとして取得し、オブジェクトポーズ予測と密に再構築された深度マップを生成します。
物体検出は教師付き方式で訓練されるが,自己教師型と教師型の両方の損失関数を用いて深度予測ネットワークを訓練する。
論文 参考訳(メタデータ) (2021-04-13T04:25:54Z) - Deep Continuous Fusion for Multi-Sensor 3D Object Detection [103.5060007382646]
本稿では,LIDARとカメラを併用して高精度な位置検出を実現する3Dオブジェクト検出器を提案する。
我々は,連続畳み込みを利用して画像とlidar特徴マップを異なるレベルの解像度で融合する,エンドツーエンド学習可能なアーキテクチャを設計した。
論文 参考訳(メタデータ) (2020-12-20T18:43:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。