論文の概要: BridgeData V2: A Dataset for Robot Learning at Scale
- arxiv url: http://arxiv.org/abs/2308.12952v2
- Date: Thu, 21 Sep 2023 21:14:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-25 18:04:03.691800
- Title: BridgeData V2: A Dataset for Robot Learning at Scale
- Title(参考訳): BridgeData V2: 大規模ロボット学習のためのデータセット
- Authors: Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Max Du, Chongyi
Zheng, Tony Zhao, Philippe Hansen-Estruch, Quan Vuong, Andre He, Vivek Myers,
Kuan Fang, Chelsea Finn, Sergey Levine
- Abstract要約: BridgeData V2は、ロボット操作行動の大規模で多様なデータセットである。
対象は、24の環境にまたがる60,096個のトラジェクトリだ。
- 参考スコア(独自算出の注目度): 73.86688388408021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce BridgeData V2, a large and diverse dataset of robotic
manipulation behaviors designed to facilitate research on scalable robot
learning. BridgeData V2 contains 60,096 trajectories collected across 24
environments on a publicly available low-cost robot. BridgeData V2 provides
extensive task and environment variability, leading to skills that can
generalize across environments, domains, and institutions, making the dataset a
useful resource for a broad range of researchers. Additionally, the dataset is
compatible with a wide variety of open-vocabulary, multi-task learning methods
conditioned on goal images or natural language instructions. In our
experiments, we train 6 state-of-the-art imitation learning and offline
reinforcement learning methods on our dataset, and find that they succeed on a
suite of tasks requiring varying amounts of generalization. We also demonstrate
that the performance of these methods improves with more data and higher
capacity models, and that training on a greater variety of skills leads to
improved generalization. By publicly sharing BridgeData V2 and our pre-trained
models, we aim to accelerate research in scalable robot learning methods.
Project page at https://rail-berkeley.github.io/bridgedata
- Abstract(参考訳): スケーラブルなロボット学習の研究を容易にするように設計されたロボット操作行動の大規模かつ多様なデータセットであるbridgedata v2を紹介する。
BridgeData V2には、24の環境にまたがる60,096のトラジェクトリが含まれている。
BridgeData V2は広範なタスクと環境の多様性を提供し、環境、ドメイン、機関をまたいで一般化できるスキルをもたらし、データセットを幅広い研究者にとって有用なリソースにする。
さらにデータセットは、ゴールイメージや自然言語命令を条件とした、さまざまなオープンボキャブラリなマルチタスク学習手法と互換性がある。
実験では,我々のデータセット上で6つの最先端模倣学習とオフライン強化学習法をトレーニングし,それらが様々な一般化を必要とする一連のタスクで成功することを確認した。
また,これらの手法の性能は,よりデータと高いキャパシティモデルにより向上し,より多様なスキルのトレーニングによって一般化が向上することを示した。
bridgedata v2とトレーニング済みモデルを公開することにより、スケーラブルなロボット学習手法の研究を加速することを目指している。
プロジェクトページ: https://rail-berkeley.github.io/bridgedata
関連論文リスト
- Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation, Locomotion and Aviation [49.03165169369552]
さまざまな種類のロボットにまたがって単一のポリシーを訓練することによって、ロボット学習はより広範囲で多様なデータセットを活用することができる。
そこで我々はCrossFormerを提案する。CrossFormerはスケーラブルでフレキシブルなトランスフォーマーベースのポリシーで、どんな実施形態からでもデータを消費できる。
我々は、同じネットワークウェイトがシングルアームとデュアルアームの操作システム、車輪付きロボット、クワッドコプター、四足歩行など、非常に異なるロボットを制御できることを実証した。
論文 参考訳(メタデータ) (2024-08-21T17:57:51Z) - Scaling Robot Learning with Semantically Imagined Experience [21.361979238427722]
ロボット学習の最近の進歩は、ロボットが操作タスクを実行できることを約束している。
この進歩に寄与する要因の1つは、モデルのトレーニングに使用されるロボットデータのスケールである。
本稿では,コンピュータビジョンや自然言語処理に広く用いられているテキスト・ツー・イメージ基盤モデルを利用した代替手法を提案する。
論文 参考訳(メタデータ) (2023-02-22T18:47:51Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
我々は,有望なスケーラブルなモデル特性を示す,ロボティクストランスフォーマーと呼ばれるモデルクラスを提示する。
実世界の課題を遂行する実ロボットの大規模データ収集に基づいて,様々なモデルクラスと,データサイズ,モデルサイズ,データの多様性の関数として一般化する能力について検証した。
論文 参考訳(メタデータ) (2022-12-13T18:55:15Z) - Development of a robust cascaded architecture for intelligent robot
grasping using limited labelled data [0.0]
ロボットの場合、オブジェクトを効果的に把握する方法を学ぶために多くの時間を費やす余裕はありません。
本稿では,VQVAEに基づく効率的な学習アーキテクチャを提案する。
ラベル付きデータセットが限定された場合でも,より一般化可能な半教師付き学習ベースモデルについて検討した。
論文 参考訳(メタデータ) (2021-11-06T11:01:15Z) - Bridge Data: Boosting Generalization of Robotic Skills with Cross-Domain
Datasets [122.85598648289789]
マルチドメインとマルチタスクのデータセットが、新しい環境における新しいタスクの学習を改善する方法について検討する。
また、新しいドメイン内の少数のタスクのみのデータによって、ドメインギャップを埋めることができ、ロボットが他のドメインでしか見られなかったさまざまなタスクを実行できることもわかりました。
論文 参考訳(メタデータ) (2021-09-27T23:42:12Z) - Actionable Models: Unsupervised Offline Reinforcement Learning of
Robotic Skills [93.12417203541948]
与えられたデータセットの任意の目標状態に到達するために学習することによって、環境の機能的な理解を学ぶ目的を提案する。
提案手法は,高次元カメラ画像上で動作し,これまで見つからなかったシーンやオブジェクトに一般化した実ロボットの様々なスキルを学習することができる。
論文 参考訳(メタデータ) (2021-04-15T20:10:11Z) - COG: Connecting New Skills to Past Experience with Offline Reinforcement
Learning [78.13740204156858]
我々は、動的プログラミングによって新しいスキルを拡張するために、事前データを再利用できることを示します。
我々は、新しいタスクを解決するために、以前のデータセットに見られるいくつかの動作をチェーンすることで、アプローチの有効性を実証する。
我々は、高次元画像観察を低レベルのロボット制御コマンドにマッピングし、エンドツーエンドでポリシーを訓練する。
論文 参考訳(メタデータ) (2020-10-27T17:57:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。