A Survey of AI Music Generation Tools and Models
- URL: http://arxiv.org/abs/2308.12982v1
- Date: Thu, 24 Aug 2023 00:49:08 GMT
- Title: A Survey of AI Music Generation Tools and Models
- Authors: Yueyue Zhu, Jared Baca, Banafsheh Rekabdar, Reza Rawassizadeh
- Abstract summary: We classified music generation approaches into three categories: parameter-based, text-based, and visual-based classes.
Our survey highlights the diverse possibilities and functional features of these tools, which cater to a wide range of users.
Our survey offers critical insights into the underlying mechanisms and challenges of AI music generation.
- Score: 0.9421843976231371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we provide a comprehensive survey of AI music generation tools,
including both research projects and commercialized applications. To conduct
our analysis, we classified music generation approaches into three categories:
parameter-based, text-based, and visual-based classes. Our survey highlights
the diverse possibilities and functional features of these tools, which cater
to a wide range of users, from regular listeners to professional musicians. We
observed that each tool has its own set of advantages and limitations. As a
result, we have compiled a comprehensive list of these factors that should be
considered during the tool selection process. Moreover, our survey offers
critical insights into the underlying mechanisms and challenges of AI music
generation.
Related papers
- Tool Learning with Large Language Models: A Survey [60.733557487886635]
Tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.
Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization.
arXiv Detail & Related papers (2024-05-28T08:01:26Z) - What Are Tools Anyway? A Survey from the Language Model Perspective [67.18843218893416]
Language models (LMs) are powerful yet mostly for text generation tasks.
We provide a unified definition of tools as external programs used by LMs.
We empirically study the efficiency of various tooling methods.
arXiv Detail & Related papers (2024-03-18T17:20:07Z) - MusicAgent: An AI Agent for Music Understanding and Generation with
Large Language Models [54.55063772090821]
MusicAgent integrates numerous music-related tools and an autonomous workflow to address user requirements.
The primary goal of this system is to free users from the intricacies of AI-music tools, enabling them to concentrate on the creative aspect.
arXiv Detail & Related papers (2023-10-18T13:31:10Z) - LLM-based Interaction for Content Generation: A Case Study on the
Perception of Employees in an IT department [85.1523466539595]
This paper presents a questionnaire survey to identify the intention to use generative tools by employees of an IT company.
Our results indicate a rather average acceptability of generative tools, although the more useful the tool is perceived to be, the higher the intention seems to be.
Our analyses suggest that the frequency of use of generative tools is likely to be a key factor in understanding how employees perceive these tools in the context of their work.
arXiv Detail & Related papers (2023-04-18T15:35:43Z) - Tool Learning with Foundation Models [158.8640687353623]
With the advent of foundation models, AI systems have the potential to be equally adept in tool use as humans.
Despite its immense potential, there is still a lack of a comprehensive understanding of key challenges, opportunities, and future endeavors in this field.
arXiv Detail & Related papers (2023-04-17T15:16:10Z) - Adoption of AI Technology in the Music Mixing Workflow: An Investigation [0.0]
The study investigates the current state of AI in the mixing music and its adoption by different user groups.
Our findings show that while AI mixing tools can simplify the process, pro-ams seek precise control and customization options.
The study provides strategies for designing effective AI mixing tools for different user groups and outlines future directions.
arXiv Detail & Related papers (2023-04-06T22:47:59Z) - "Melatonin": A Case Study on AI-induced Musical Style [0.0]
"Melatonin" is a song produced by extensive use of BassNet, an AI tool originally designed to generate bass lines.
We identify style characteristics of the song in relation to the affordances of the tool, highlighting manifestations of style in terms of both idiom and sound.
arXiv Detail & Related papers (2022-08-18T17:17:53Z) - A Comprehensive Survey on Deep Music Generation: Multi-level
Representations, Algorithms, Evaluations, and Future Directions [10.179835761549471]
This paper attempts to provide an overview of various composition tasks under different music generation levels using deep learning.
In addition, we summarize datasets suitable for diverse tasks, discuss the music representations, the evaluation methods as well as the challenges under different levels, and finally point out several future directions.
arXiv Detail & Related papers (2020-11-13T08:01:20Z) - Artificial Musical Intelligence: A Survey [51.477064918121336]
Music has become an increasingly prevalent domain of machine learning and artificial intelligence research.
This article provides a definition of musical intelligence, introduces a taxonomy of its constituent components, and surveys the wide range of AI methods that can be, and have been, brought to bear in its pursuit.
arXiv Detail & Related papers (2020-06-17T04:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.