Tool Learning with Large Language Models: A Survey
- URL: http://arxiv.org/abs/2405.17935v3
- Date: Mon, 04 Nov 2024 15:07:18 GMT
- Title: Tool Learning with Large Language Models: A Survey
- Authors: Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, Ji-Rong Wen,
- Abstract summary: Tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.
Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization.
- Score: 60.733557487886635
- License:
- Abstract: Recently, tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems. Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization, posing barriers to entry for newcomers. This gap motivates us to conduct a comprehensive survey of existing works on tool learning with LLMs. In this survey, we focus on reviewing existing literature from the two primary aspects (1) why tool learning is beneficial and (2) how tool learning is implemented, enabling a comprehensive understanding of tool learning with LLMs. We first explore the "why" by reviewing both the benefits of tool integration and the inherent benefits of the tool learning paradigm from six specific aspects. In terms of "how", we systematically review the literature according to a taxonomy of four key stages in the tool learning workflow: task planning, tool selection, tool calling, and response generation. Additionally, we provide a detailed summary of existing benchmarks and evaluation methods, categorizing them according to their relevance to different stages. Finally, we discuss current challenges and outline potential future directions, aiming to inspire both researchers and industrial developers to further explore this emerging and promising area. We also maintain a GitHub repository to continually keep track of the relevant papers and resources in this rising area at https://github.com/quchangle1/LLM-Tool-Survey.
Related papers
- LLM With Tools: A Survey [0.0]
This paper delves into the methodology,challenges, and developments in the realm of teaching LLMs to use external tools.
We introduce a standardized paradigm for tool integration guided by a series of functions that map user instructions to actionable plans.
Our exploration reveals the various challenges encountered, such as tool invocation timing, selection accuracy, and the need for robust reasoning processes.
arXiv Detail & Related papers (2024-09-24T14:08:11Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain (ATC) is a framework that enables the large language models (LLMs) to act as a multi-tool user.
To scale up the scope of the tools, we next propose a black-box probing method.
For a comprehensive evaluation, we build a challenging benchmark named ToolFlow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
Real-world systems often incorporate a wide array of tools, making it impractical to input all tools into Large Language Models.
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions.
We propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools.
arXiv Detail & Related papers (2024-05-25T06:41:23Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
We propose a decision-aware and generalizable tool-usage framework (DEER)
Specifically, we first construct the tool-usage samples with multiple decision branches via an automatic generation pipeline.
Our proposed DEER is effective and significantly outperforms baselines across various datasets.
arXiv Detail & Related papers (2024-02-26T16:11:03Z) - ToolEyes: Fine-Grained Evaluation for Tool Learning Capabilities of
Large Language Models in Real-world Scenarios [48.38419686697733]
We propose ToolEyes, a fine-grained system tailored for the evaluation of large language models' tool learning capabilities in authentic scenarios.
The system meticulously examines seven real-world scenarios, analyzing five dimensions crucial to LLMs in tool learning.
ToolEyes incorporates a tool library boasting approximately 600 tools, serving as an intermediary between LLMs and the physical world.
arXiv Detail & Related papers (2024-01-01T12:49:36Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation.
We present an extensive overview by categorizing these works in terms of various IE subtasks and techniques.
We empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs.
arXiv Detail & Related papers (2023-12-29T14:25:22Z) - Confucius: Iterative Tool Learning from Introspection Feedback by
Easy-to-Difficult Curriculum [42.36892453363961]
We propose a novel tool learning framework to train large language models (LLMs) to use complicated tools in real-world scenarios.
We first propose a multi-stage learning method to teach the LLM to use various tools from an easy-to-difficult curriculum.
We then propose the Iterative Self-instruct from Introspective Feedback to dynamically construct the dataset to improve the ability to use the complicated tool.
arXiv Detail & Related papers (2023-08-27T07:53:00Z) - Tool Learning with Foundation Models [158.8640687353623]
With the advent of foundation models, AI systems have the potential to be equally adept in tool use as humans.
Despite its immense potential, there is still a lack of a comprehensive understanding of key challenges, opportunities, and future endeavors in this field.
arXiv Detail & Related papers (2023-04-17T15:16:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.