論文の概要: Hyperbolic Random Forests
- arxiv url: http://arxiv.org/abs/2308.13279v2
- Date: Mon, 24 Jun 2024 13:57:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 04:58:37.129787
- Title: Hyperbolic Random Forests
- Title(参考訳): 双生葉樹林
- Authors: Lars Doorenbos, Pablo Márquez-Neila, Raphael Sznitman, Pascal Mettes,
- Abstract要約: 我々は、よく知られたランダムな森林を双曲空間に一般化する。
ホロスフィアを用いて分割の概念を再定義することでこれを実現できる。
また、最小の共通祖先に基づくクラスと、大マルジン損失のクラスバランスバージョンを結合する新しい手法についても概説する。
- 参考スコア(独自算出の注目度): 15.992363138277442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperbolic space is becoming a popular choice for representing data due to the hierarchical structure - whether implicit or explicit - of many real-world datasets. Along with it comes a need for algorithms capable of solving fundamental tasks, such as classification, in hyperbolic space. Recently, multiple papers have investigated hyperbolic alternatives to hyperplane-based classifiers, such as logistic regression and SVMs. While effective, these approaches struggle with more complex hierarchical data. We, therefore, propose to generalize the well-known random forests to hyperbolic space. We do this by redefining the notion of a split using horospheres. Since finding the globally optimal split is computationally intractable, we find candidate horospheres through a large-margin classifier. To make hyperbolic random forests work on multi-class data and imbalanced experiments, we furthermore outline a new method for combining classes based on their lowest common ancestor and a class-balanced version of the large-margin loss. Experiments on standard and new benchmarks show that our approach outperforms both conventional random forest algorithms and recent hyperbolic classifiers.
- Abstract(参考訳): ハイパーボリックスペースは、多くの現実世界のデータセットの階層構造(暗黙的か明示的かに関わらず)によって、データを表現するための一般的な選択肢になりつつある。
同時に、双曲空間における分類のような基本的なタスクを解くアルゴリズムも必要となる。
近年、ロジスティック回帰やSVMといった超平面型分類器の双曲的代替法について研究が進められている。
効果はあるものの、これらのアプローチはより複雑な階層的なデータと競合する。
そこで我々は、よく知られたランダムな森を双曲空間に一般化することを提案する。
ホロスフィアを用いて分割の概念を再定義することでこれを実現できる。
大域的な最適分割を見つけることは計算的に難解であるため、大マルジン分類器を通して候補ホロスフィアを求める。
マルチクラスデータと不均衡な実験で双曲的ランダム林を機能させるため、より低い共通祖先と大マルジン損失のクラスバランスバージョンに基づいてクラスを結合する新しい手法を概説する。
標準および新しいベンチマーク実験により、我々の手法は従来のランダムフォレストアルゴリズムと最近の双曲型分類器の両方より優れていることが示された。
関連論文リスト
- Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
大規模未ラベルデータから学ぶための2つの戦略を提案する。
第1の戦略は、近傍関係に違反することなく、それぞれのデータセットサイズを減らすために、局所的な近傍サンプリングを行う。
第2の戦略は、低時間上限の複雑さを持ち、メモリの複雑さを O(n2) から O(kn) に k n で還元する新しい再帰的手法を利用する。
論文 参考訳(メタデータ) (2023-07-26T16:19:19Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
本稿では,ガウス混合に基づく複合バッチ正規化法を提案する。
機能空間をより包括的にモデル化し、ヘッドクラスの優位性を減らすことができる。
提案手法は,画像分類における既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-02T07:31:39Z) - HyperAid: Denoising in hyperbolic spaces for tree-fitting and
hierarchical clustering [36.738414547278154]
双曲空間におけるツリーメトリック・デノイング(HyperAid)に対する新しいアプローチを提案する。
Gromovの$delta$ hyperbolicity($delta$ hyperbolicity)の観点から評価すると、元のデータをツリーのようなデータに変換する。
我々はHyperAidを非負のエッジウェイトを強制するためのスキームに統合する。
論文 参考訳(メタデータ) (2022-05-19T17:33:16Z) - Contrastive Multi-view Hyperbolic Hierarchical Clustering [33.050054725595736]
対比多視点ハイパーボリック階層クラスタリング(CMHHC)を提案する。
マルチビューアライメント学習、アライメントされた特徴類似学習、連続的な双曲的階層的クラスタリングという3つのコンポーネントで構成されている。
5つの実世界のデータセットに対する実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-05-05T12:56:55Z) - HRCF: Enhancing Collaborative Filtering via Hyperbolic Geometric
Regularization [52.369435664689995]
HRCF (textitHyperbolic Regularization powered Collaborative Filtering) を導入し,幾何認識型双曲正規化器を設計する。
具体的には、ルートアライメントとオリジン認識ペナルティによる最適化手順を強化する。
提案手法は,双曲的凝集による過度な平滑化問題に対処でき,モデルの識別能力も向上する。
論文 参考訳(メタデータ) (2022-04-18T06:11:44Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z) - Highly Scalable and Provably Accurate Classification in Poincare Balls [40.82908295137667]
我々は、スケーラブルで単純な双曲型線形分類器を証明可能な性能保証で学習するための統一的なフレームワークを構築した。
提案手法は,新しい双曲型および二階型パーセプトロンアルゴリズムと,双曲型サポートベクトルマシン分類器の効率的かつ高精度な凸最適化設定を含む。
数百万の点からなる合成データセットと、シングルセルRNA-seq式測定、CIFAR10、Fashion-MNIST、mini-ImageNetのような複雑な実世界のデータセットの性能評価を行う。
論文 参考訳(メタデータ) (2021-09-08T16:59:39Z) - A Fully Hyperbolic Neural Model for Hierarchical Multi-Class
Classification [7.8176853587105075]
双曲空間は、記号データの階層的表現を学ぶために数学的に魅力的なアプローチを提供する。
本研究は,双曲空間におけるすべての操作を実行する多クラス多ラベル分類のための完全双曲モデルを提案する。
徹底的な分析では、最終予測における各コンポーネントの影響に光を当て、ユークリッド層との統合の容易さを示している。
論文 参考訳(メタデータ) (2020-10-05T14:42:56Z) - Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier [68.38233199030908]
ロングテール認識は、現実世界のシナリオにおける自然な非一様分散データに取り組む。
モダンは人口密度の高いクラスではうまく機能するが、そのパフォーマンスはテールクラスでは著しく低下する。
Deep-RTCは、リアリズムと階層的予測を組み合わせたロングテール問題の新しい解法として提案されている。
論文 参考訳(メタデータ) (2020-07-20T05:57:42Z) - Robust Large-Margin Learning in Hyperbolic Space [64.42251583239347]
ユークリッド空間ではなく双曲型で分類器を学ぶための最初の理論的保証を示す。
本研究では, 対向例の慎重な注入に頼って, 大面積超平面を効率よく学習するアルゴリズムを提案する。
双曲空間によく埋め込まれる階層的データに対して、低埋め込み次元は優れた保証を保証することを証明している。
論文 参考訳(メタデータ) (2020-04-11T19:11:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。