Asch Meets HRI: Human Conformity to Robot Groups
- URL: http://arxiv.org/abs/2308.13307v1
- Date: Fri, 25 Aug 2023 11:14:24 GMT
- Title: Asch Meets HRI: Human Conformity to Robot Groups
- Authors: Jasmina Bernotat, Doreen Jirak, Eduardo Benitez Sandoval, Francisco
Cruz
- Abstract summary: We present a research outline that aims at investigating group dynamics and peer pressure in the context of industrial robots.
We are interested in highlighting the effects of group size, perceived robot credibility, psychological stress, and peer pressure in the context of industrial robots.
- Score: 0.9350546589421261
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a research outline that aims at investigating group dynamics and
peer pressure in the context of industrial robots. Our research plan was
motivated by the fact that industrial robots became already an integral part of
human-robot co-working. However, industrial robots have been sparsely
integrated into research on robot credibility, group dynamics, and potential
users' tendency to follow a robot's indication. Therefore, we aim to transfer
the classic Asch experiment (see \cite{Asch_51}) into HRI with industrial
robots. More precisely, we will test to what extent participants follow a
robot's response when confronted with a group (vs. individual) industrial robot
arms (vs. human) peers who give a false response. We are interested in
highlighting the effects of group size, perceived robot credibility,
psychological stress, and peer pressure in the context of industrial robots.
With the results of this research, we hope to highlight group dynamics that
might underlie HRI in industrial settings in which numerous robots already work
closely together with humans in shared environments.
Related papers
- Human Reactions to Incorrect Answers from Robots [0.0]
The study systematically studies how trust dynamics and system design are affected by human responses to robot failures.
Results show that participants' trust in robotic technologies increased significantly when robots acknowledged their errors or limitations.
The study advances the science of human-robot interaction and promotes a wider adoption of robotic technologies.
arXiv Detail & Related papers (2024-03-21T11:00:11Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - The dynamic nature of trust: Trust in Human-Robot Interaction revisited [0.38233569758620045]
Socially assistive robots (SARs) assist humans in the real world.
Risk introduces an element of trust, so understanding human trust in the robot is imperative.
arXiv Detail & Related papers (2023-03-08T19:20:11Z) - Fleet-DAgger: Interactive Robot Fleet Learning with Scalable Human
Supervision [72.4735163268491]
Commercial and industrial deployments of robot fleets often fall back on remote human teleoperators during execution.
We formalize the Interactive Fleet Learning (IFL) setting, in which multiple robots interactively query and learn from multiple human supervisors.
We propose Fleet-DAgger, a family of IFL algorithms, and compare a novel Fleet-DAgger algorithm to 4 baselines in simulation.
arXiv Detail & Related papers (2022-06-29T01:23:57Z) - The Road to a Successful HRI: AI, Trust and ethicS-TRAITS [64.77385130665128]
The aim of this workshop is to foster the exchange of insights on past and ongoing research towards effective and long-lasting collaborations between humans and robots.
We particularly focus on AI techniques required to implement autonomous and proactive interactions.
arXiv Detail & Related papers (2022-06-07T11:12:45Z) - A proxemics game between festival visitors and an industrial robot [1.2599533416395767]
Nonverbal behaviours of collaboration partners in human-robot teams influence the experience of the human interaction partners.
During the Ars Electronica 2020 Festival for Art, Technology and Society (Linz, Austria), we invited visitors to interact with an industrial robot.
We investigated general nonverbal behaviours of the humans interacting with the robot, as well as nonverbal behaviours of people in the audience.
arXiv Detail & Related papers (2021-05-28T13:26:00Z) - A Review on Trust in Human-Robot Interaction [0.0]
A new field of research in human-robot interaction, namely human-robot trust, is emerging.
This paper reviews the past works on human-robot trust based on the research topics and discuss selected trends in this field.
arXiv Detail & Related papers (2021-05-20T21:50:03Z) - The Road to a Successful HRI: AI, Trust and ethicS-TRAITS [65.60507052509406]
The aim of this workshop is to give researchers from academia and industry the possibility to discuss the inter-and multi-disciplinary nature of the relationships between people and robots.
arXiv Detail & Related papers (2021-03-23T16:52:12Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z) - Supportive Actions for Manipulation in Human-Robot Coworker Teams [15.978389978586414]
We term actions that support interaction by reducing future interference with others as supportive robot actions.
We compare two robot modes in a shared table pick-and-place task: (1) Task-oriented: the robot only takes actions to further its own task objective and (2) Supportive: the robot sometimes prefers supportive actions to task-oriented ones.
Our experiments in simulation, using a simplified human model, reveal that supportive actions reduce the interference between agents, especially in more difficult tasks, but also cause the robot to take longer to complete the task.
arXiv Detail & Related papers (2020-05-02T09:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.