Using Visual and Vehicular Sensors for Driver Behavior Analysis: A
Survey
- URL: http://arxiv.org/abs/2308.13406v1
- Date: Fri, 25 Aug 2023 14:33:59 GMT
- Title: Using Visual and Vehicular Sensors for Driver Behavior Analysis: A
Survey
- Authors: Bikram Adhikari
- Abstract summary: Risky drivers account for 70% of fatal accidents in the United States.
This paper examines the various techniques used to analyze driver behavior using visual and vehicular data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Risky drivers account for 70% of fatal accidents in the United States. With
recent advances in sensors and intelligent vehicular systems, there has been
significant research on assessing driver behavior to improve driving
experiences and road safety. This paper examines the various techniques used to
analyze driver behavior using visual and vehicular data, providing an overview
of the latest research in this field. The paper also discusses the challenges
and open problems in the field and offers potential recommendations for future
research. The survey concludes that integrating vision and vehicular
information can significantly enhance the accuracy and effectiveness of driver
behavior analysis, leading to improved safety measures and reduced traffic
accidents.
Related papers
- Enhancing Road Safety: Real-Time Detection of Driver Distraction through Convolutional Neural Networks [0.0]
This study seeks to identify the most efficient model for real-time detection of driver distractions.
The ultimate aim is to incorporate the findings into vehicle safety systems, significantly boosting their capability to prevent accidents triggered by inattention.
arXiv Detail & Related papers (2024-05-28T03:34:55Z) - AccidentGPT: Accident Analysis and Prevention from V2X Environmental
Perception with Multi-modal Large Model [32.14950866838055]
AccidentGPT is a comprehensive accident analysis and prevention multi-modal large model.
For autonomous driving vehicles, we provide comprehensive environmental perception and understanding to control the vehicle and avoid collisions.
For human-driven vehicles, we offer proactive long-range safety warnings and blind-spot alerts.
Our framework supports intelligent and real-time analysis of traffic safety, encompassing pedestrian, vehicles, roads, and the environment.
arXiv Detail & Related papers (2023-12-20T16:19:47Z) - DRUformer: Enhancing the driving scene Important object detection with
driving relationship self-understanding [50.81809690183755]
Traffic accidents frequently lead to fatal injuries, contributing to over 50 million deaths until 2023.
Previous research primarily assessed the importance of individual participants, treating them as independent entities.
We introduce Driving scene Relationship self-Understanding transformer (DRUformer) to enhance the important object detection task.
arXiv Detail & Related papers (2023-11-11T07:26:47Z) - Considering Human Factors in Risk Maps for Robust and Foresighted Driver
Warning [1.4699455652461728]
We propose a warning system that uses human states in the form of driver errors.
The system consists of a behavior planner Risk Maps which directly changes its prediction of the surrounding driving situation.
In different simulations of a dynamic lane change and intersection scenarios, we show how the driver's behavior plan can become unsafe.
arXiv Detail & Related papers (2023-06-06T16:39:58Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Modelling and Detection of Driver's Fatigue using Ontology [60.090278944561184]
Road accidents are the eight leading cause of death all over the world.
Various factors cause driver's fatigue.
Ontological knowledge and rules for driver fatigue detection are to be integrated into an intelligent system.
arXiv Detail & Related papers (2022-08-31T08:42:28Z) - Drivers' attention detection: a systematic literature review [62.997667081978825]
Many factors can contribute to distractions while driving, since objects or events to physiological conditions, as drowsiness and fatigue, do not allow the driver to stay attentive.
The technological progress allowed the development and application of many solutions to detect the attention in real situations.
Our work presents a Systematic Literature Review of the methods and criteria used to detect attention of drivers at the wheel.
arXiv Detail & Related papers (2022-04-06T11:36:40Z) - Dynamic and Systematic Survey of Deep Learning Approaches for Driving
Behavior Analysis [2.879036956042183]
Analyzing driving behaviour could lead to optimize and avoid mentioned issues.
By identifying the type of driving and mapping them to the consequences of that type of driving, we can get a model to prevent them.
arXiv Detail & Related papers (2021-09-18T19:47:03Z) - Behavioral Research and Practical Models of Drivers' Attention [21.70169149901781]
This report covers the literature on changes in drivers' visual attention due to factors, internal and external to the driver.
It links cross-disciplinary theoretical and behavioral research on driver's attention to practical solutions.
This report is based on over 175 behavioral studies, nearly 100 practical papers, 20 datasets, and over 70 surveys published since 2010.
arXiv Detail & Related papers (2021-04-12T17:42:04Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
We present a framework for the detection of the drivers' intention based on both in-cabin and traffic scene videos.
Our framework achieves a prediction with the accuracy of 83.98% and F1-score of 84.3%.
arXiv Detail & Related papers (2020-06-20T11:56:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.