Topological photonic band gaps in honeycomb atomic arrays
- URL: http://arxiv.org/abs/2308.13423v3
- Date: Tue, 26 Mar 2024 11:01:29 GMT
- Title: Topological photonic band gaps in honeycomb atomic arrays
- Authors: Pierre Wulles, Sergey E. Skipetrov,
- Abstract summary: We study the spectrum of excitations of a two-dimensional, planar honeycomb lattice of two-level atoms coupled by the in-plane electromagnetic field.
We establish the conditions of band gap opening, compute the width of the gap, and characterize its topological property by a topological index (Chern number)
A larger $d$ allows for propagating optical modes that are built up due to reflections at the cavity mirrors and have frequencies inside the band gap of the free-standing lattice, thus closing the latter.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The spectrum of excitations a two-dimensional, planar honeycomb lattice of two-level atoms coupled by the in-plane electromagnetic field may exhibit band gaps that can be opened either by applying an external magnetic field or by breaking the symmetry between the two triangular sublattices of which the honeycomb one is a superposition. We establish the conditions of band gap opening, compute the width of the gap, and characterize its topological property by a topological index (Chern number). The topological nature of the band gap leads to inversion of the population imbalance between the two triangular sublattices for modes with frequencies near band edges. It also prohibits a transition to the trivial limit of infinitely spaced, noninteracting atoms without closing the spectral gap. Surrounding the lattice by a Fabry-P\'erot cavity with small intermirror spacing $d < {\pi}/k_0$ , where $k_0$ is the free-space wave number at the atomic resonance frequency, renders the system Hermitian by suppressing the leakage of energy out of the atomic plane without modifying its topological properties. In contrast, a larger $d$ allows for propagating optical modes that are built up due to reflections at the cavity mirrors and have frequencies inside the band gap of the free-standing lattice, thus closing the latter.
Related papers
- Edge states in all-dielectric square-lattice arrays of bianisotropic microwave resonators [0.0]
We numerically and experimentally demonstrate the presence of edge states at the interface between two domains with opposite orientations of the bianisotropic resonators.
The considered design opens novel possibilities in constructing optical and microwave structures simultaneously featuring edge states at the interfaces between distinct resonator domains or a resonator domain and free space.
arXiv Detail & Related papers (2024-06-21T15:40:08Z) - Interference induced anisotropy in a two-dimensional dark state optical
lattice [0.0]
We describe a two-dimensional optical lattice for ultracold atoms with spatial features below the diffraction limit.
We numerically investigate the energy spectrum including decay from the excited state, and find that the adiabatic approximation is sound for strong coupling strengths.
arXiv Detail & Related papers (2023-04-01T12:02:25Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Tight-Binding realization of non-abelian gauge fields: singular spectra
and wave confinement [0.0]
We present a geometric construction of a lattice that emulates the action of a gauge field on a fermion.
The emulation covers both abelian and non-abelian gauge fields.
arXiv Detail & Related papers (2021-06-09T22:15:24Z) - Fano interference in quantum resonances from angle-resolved elastic
scattering [62.997667081978825]
We show that probing the angular dependence of the cross section allows us to unveil asymmetric Fano profiles in a single channel shape resonance.
We observe a shift in the peak of the resonance profile in the elastic collisions between metastable helium and deuterium molecules.
arXiv Detail & Related papers (2021-05-12T20:41:25Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Double exceptional links in a three-dimensional dissipative cold atomic
gas [0.9239657838690226]
We explore the topological properties of non-Hermitian nodal-link semimetals with dissipative cold atoms in a three-dimensional optical lattice.
A non-Bloch theory is built to describe the corresponding lattice model which has anomalous bulk-boundary correspondence.
arXiv Detail & Related papers (2020-05-12T07:07:35Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.