ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon
Sequential Task Planning
- URL: http://arxiv.org/abs/2308.13724v1
- Date: Sat, 26 Aug 2023 01:31:35 GMT
- Title: ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon
Sequential Task Planning
- Authors: Zhehua Zhou, Jiayang Song, Kunpeng Yao, Zhan Shu, Lei Ma
- Abstract summary: Large Language Models (LLMs) offer the potential to enhance the generalizability as task-agnostic planners.
We introduce ISR-LLM, a novel framework that improves LLM-based planning through an iterative self-refinement process.
We show that ISR-LLM is able to achieve markedly higher success rates in task accomplishments compared to state-of-the-art LLM-based planners.
- Score: 7.701407633867452
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Motivated by the substantial achievements observed in Large Language Models
(LLMs) in the field of natural language processing, recent research has
commenced investigations into the application of LLMs for complex, long-horizon
sequential task planning challenges in robotics. LLMs are advantageous in
offering the potential to enhance the generalizability as task-agnostic
planners and facilitate flexible interaction between human instructors and
planning systems. However, task plans generated by LLMs often lack feasibility
and correctness. To address this challenge, we introduce ISR-LLM, a novel
framework that improves LLM-based planning through an iterative self-refinement
process. The framework operates through three sequential steps: preprocessing,
planning, and iterative self-refinement. During preprocessing, an LLM
translator is employed to convert natural language input into a Planning Domain
Definition Language (PDDL) formulation. In the planning phase, an LLM planner
formulates an initial plan, which is then assessed and refined in the iterative
self-refinement step by using a validator. We examine the performance of
ISR-LLM across three distinct planning domains. The results show that ISR-LLM
is able to achieve markedly higher success rates in task accomplishments
compared to state-of-the-art LLM-based planners. Moreover, it also preserves
the broad applicability and generalizability of working with natural language
instructions.
Related papers
- Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making.
Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance.
We propose REPL-Plan, an LLM planning approach that is fully code-expressive and dynamic.
arXiv Detail & Related papers (2024-11-21T04:23:17Z) - Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy [8.180994118420053]
Long-horizon planning is hindered by challenges such as uncertainty accumulation, computational complexity, delayed rewards and incomplete information.
This work proposes an approach to exploit the task hierarchy from human instructions to facilitate multi-robot planning.
arXiv Detail & Related papers (2024-08-15T14:46:13Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
We introduce LangSuitE, a versatile and simulation-free testbed featuring 6 representative embodied tasks in textual embodied worlds.
Compared with previous LLM-based testbeds, LangSuitE offers adaptability to diverse environments without multiple simulation engines.
We devise a novel chain-of-thought (CoT) schema, EmMem, which summarizes embodied states w.r.t. history information.
arXiv Detail & Related papers (2024-06-24T03:36:29Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
This work lays the foundations for improving planning capabilities of large language models (LLMs)
We construct a comprehensive benchmark suite encompassing both classical planning benchmarks and natural language scenarios.
We investigate the use of many-shot in-context learning to enhance LLM planning, exploring the relationship between increased context length and improved planning performance.
arXiv Detail & Related papers (2024-06-18T22:57:06Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - Formal-LLM: Integrating Formal Language and Natural Language for Controllable LLM-based Agents [39.53593677934238]
Large Language Models (LLMs) enable AI Agents to automatically generate and execute multi-step plans to solve complex tasks.
However, current LLM-based agents frequently generate invalid or non-executable plans.
This paper proposes a novel "Formal-LLM" framework for LLM-based agents by integrating the expressiveness of natural language and the precision of formal language.
arXiv Detail & Related papers (2024-02-01T17:30:50Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
We introduce As-Needed Decomposition and Planning for complex Tasks (ADaPT)
ADaPT explicitly plans and decomposes complex sub-tasks as-needed, when the Large Language Models is unable to execute them.
Our results demonstrate that ADaPT substantially outperforms established strong baselines.
arXiv Detail & Related papers (2023-11-08T17:59:15Z) - Understanding the Capabilities of Large Language Models for Automated
Planning [24.37599752610625]
The study seeks to shed light on the capabilities of LLMs in solving complex planning problems.
It provides insights into the most effective approaches for using LLMs in this context.
arXiv Detail & Related papers (2023-05-25T15:21:09Z) - Learning to Plan with Natural Language [111.76828049344839]
Large Language Models (LLMs) have shown remarkable performance in various basic natural language tasks.
For completing the complex task, we still need a plan for the task to guide LLMs to generate the specific solutions step by step.
We propose the Learning to Plan method, which involves two phases: (1) In the first learning task plan phase, it iteratively updates the task plan with new step-by-step solutions and behavioral instructions, which are obtained by prompting LLMs to derive from training error feedback.
arXiv Detail & Related papers (2023-04-20T17:09:12Z) - Plansformer: Generating Symbolic Plans using Transformers [24.375997526106246]
Large Language Models (LLMs) have been the subject of active research, significantly advancing the field of Natural Language Processing (NLP)
We introduce Plansformer; an LLM fine-tuned on planning problems and capable of generating plans with favorable behavior in terms of correctness and length with reduced knowledge-engineering efforts.
For one configuration of Plansformer, we achieve 97% valid plans, out of which 95% are optimal for Towers of Hanoi - a puzzle-solving domain.
arXiv Detail & Related papers (2022-12-16T19:06:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.