Learning to Plan with Natural Language
- URL: http://arxiv.org/abs/2304.10464v4
- Date: Wed, 13 Dec 2023 02:08:50 GMT
- Title: Learning to Plan with Natural Language
- Authors: Yiduo Guo, Yaobo Liang, Chenfei Wu, Wenshan Wu, Dongyan Zhao, Nan Duan
- Abstract summary: Large Language Models (LLMs) have shown remarkable performance in various basic natural language tasks.
For completing the complex task, we still need a plan for the task to guide LLMs to generate the specific solutions step by step.
We propose the Learning to Plan method, which involves two phases: (1) In the first learning task plan phase, it iteratively updates the task plan with new step-by-step solutions and behavioral instructions, which are obtained by prompting LLMs to derive from training error feedback.
- Score: 111.76828049344839
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown remarkable performance in various
basic natural language tasks. For completing the complex task, we still need a
plan for the task to guide LLMs to generate the specific solutions step by
step. LLMs can directly generate task plans, but these plans may still contain
factual errors or are incomplete. A high-quality task plan contains correct
step-by-step solutions for solving all situations and behavioral instructions
for avoiding mistakes. To obtain it, we propose the Learning to Plan method,
which involves two phases: (1) In the first learning task plan phase, it
iteratively updates the task plan with new step-by-step solutions and
behavioral instructions, which are obtained by prompting LLMs to derive from
training error feedback. (2) In the subsequent test phase, the LLM uses the
learned task plan to guide the inference of LLM on the test set. We demonstrate
the effectiveness of our method on the five different reasoning type tasks (8
datasets). Further, our analysis experiment shows that the task plan learned by
one LLM can directly guide another LLM to improve its performance, which
reveals a new transfer learning paradigm. We release the code at
\url{https://github.com/Eureka6174/LearnNLPlan}
Related papers
- Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making.
Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance.
We propose REPL-Plan, an LLM planning approach that is fully code-expressive and dynamic.
arXiv Detail & Related papers (2024-11-21T04:23:17Z) - DOTS: Learning to Reason Dynamically in LLMs via Optimal Reasoning Trajectories Search [37.16633337724158]
DOTS is an approach enabling LLMs to reason dynamically via optimal reasoning trajectory search.
Our method consistently outperforms static reasoning techniques and the vanilla instruction tuning approach.
arXiv Detail & Related papers (2024-10-04T18:58:09Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
This work lays the foundations for improving planning capabilities of large language models (LLMs)
We construct a comprehensive benchmark suite encompassing both classical planning benchmarks and natural language scenarios.
We investigate the use of many-shot in-context learning to enhance LLM planning, exploring the relationship between increased context length and improved planning performance.
arXiv Detail & Related papers (2024-06-18T22:57:06Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning [12.651588927599441]
Instruction tuning aims to align large language models with open-domain instructions and human-preferred responses.
We introduce Task-Aware Curriculum Planning for Instruction Refinement (TAPIR) to select instructions that are difficult for a student LLM to follow.
To balance the student's capabilities, task distributions in training sets are adjusted with responses automatically refined according to their corresponding tasks.
arXiv Detail & Related papers (2024-05-22T08:38:26Z) - TIC: Translate-Infer-Compile for accurate "text to plan" using LLMs and Logical Representations [0.0]
We study the problem of generating plans for given natural language planning task requests.
Our approach comprises of (a) translate: using an LLM only for generating a interpretable intermediate representation of natural language task description.
We observe that using an LLM to only output the intermediate representation significantly reduces LLM errors.
arXiv Detail & Related papers (2024-02-09T18:39:13Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon
Sequential Task Planning [7.701407633867452]
Large Language Models (LLMs) offer the potential to enhance the generalizability as task-agnostic planners.
We introduce ISR-LLM, a novel framework that improves LLM-based planning through an iterative self-refinement process.
We show that ISR-LLM is able to achieve markedly higher success rates in task accomplishments compared to state-of-the-art LLM-based planners.
arXiv Detail & Related papers (2023-08-26T01:31:35Z) - Understanding the Capabilities of Large Language Models for Automated
Planning [24.37599752610625]
The study seeks to shed light on the capabilities of LLMs in solving complex planning problems.
It provides insights into the most effective approaches for using LLMs in this context.
arXiv Detail & Related papers (2023-05-25T15:21:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.